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Abstract: 
Background: The underlying biological mechanisms through which epidemiologically 
defined breast cancer risk factors contribute to disease risk remain poorly understood. 
Identification of the molecular changes associated with cancer risk factors in normal 
tissues may aid in determining the earliest events of carcinogenesis and informing 
cancer prevention strategies.  
Results: Here we investigated the impact cancer risk factors have on the normal breast 
epigenome by analyzing DNA methylation genome-wide (Infinium 450K array) in 
cancer-free women from the Susan G. Komen Tissue Bank (n = 100). We tested the 
relation of established breast cancer risk factors: age, body mass index, parity, and 
family history of disease with DNA methylation adjusting for potential variation in cell-
type proportions. We identified 787 CpG sites that demonstrated significant associations 
(Q-value < 0.01) with subject age. Notably, DNA methylation was not strongly 
associated with the other evaluated breast cancer risk factors. Age-related DNA 
methylation changes are primarily increases in methylation enriched at breast epithelial 
cell enhancer regions (P = 7.1E-20), and binding sites of chromatin remodelers (MYC 
and CTCF). We validated the age-related associations in two independent populations 
of normal breast tissue (n = 18) and normal-adjacent to tumor tissue (n = 97). The 
genomic regions classified as age-related were more likely to be regions altered in 
cancer in both pre-invasive (n = 40, P=3.0E-03) and invasive breast tumors (n = 731, 
P=1.1E-13).  
Conclusions: DNA methylation changes with age occur at regulatory regions, and are 
further exacerbated in cancer suggesting that age influences breast cancer risk in part 
through its contribution to epigenetic dysregulation in normal breast tissue. 
 
Background: 
        Breast cancer represents a major public health problem in the United States with 
245,000 new cases and 40,000 deaths expected this year [1]. An effective way to 
decrease disease-related morbidity and mortality is to identify individuals who may be at 
increased risk of developing breast cancer and apply early intervention strategies. In 
addition to inherited gene mutations, there are several demographic factors that are 
associated with an increased risk of breast cancer including: increasing age, being 
overweight after menopause, alcohol intake, having never been pregnant (that is, 
nulliparous), earlier age at menarche, and a family history of breast cancer [2-4]. 
However, the underlying biologic mechanism(s) through which many of these 
epidemiologically defined breast cancer risk factors contribute to carcinogenesis 
remains unclear.  

Biomarkers strongly associated with breast cancer risk factors provide an 
opportunity to understand cancer development. One such potential biomarker 
investigated for its role in the early detection of breast cancer is DNA methylation. DNA 
methylation is the covalent addition of a methyl group to cytosine, often in the context of 
a cytosine followed by a guanine in the ‘5 to 3’ direction (that is, a CpG), and is 
necessary for cell-type specific differentiation, including in the mammary gland [5-7]. 
DNA methylation is a stable, yet modifiable epigenetic modification and DNA 
methylation alterations are known to occur early in breast carcinogenesis [8, 9]. It has 
been hypothesized that disease risk factors may mediate their disease predisposing 
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effects through perturbation of epigenomic control. Candidate gene studies in tumor 
adjacent normal breast tissues indicate that DNA methylation changes are related to 
age as well as other known breast cancer risk factors. For example, women without 
breast cancer, but at a high risk (Gail model score) were more likely to have aberrant 
methylation of the tumor suppressor genes APC as well as RASSF1 compared with low 
risk women [10]. In another candidate gene study of normal breast tissue, the same 
group observed that RASSF1 methylation was associated with breast cancer risk level, 
and that increasing parity was associated with decreased APC methylation [11]. More 
recently, a study identified cancer-related field defects in DNA methylation using normal 
breast tissues from disease-free subjects and tumor-adjacent normal breast tissues 
[12]. Preliminary analyses in tumor-adjacent normal breast tissue provide evidence that 
age-related DNA methylation changes are more likely to be altered in breast tumors 
than randomly selected regions [13]. However, the relation of breast cancer risk factors 
with DNA methylation changes in the normal breast remains to be investigated.  

Here we extend the foundational work to tissues from disease-free women with 
detailed breast cancer risk factor data and apply more comprehensive epigenomic 
profiling methods. We test the relation of breast cancer risk factors such as age, body 
mass index (BMI), reproductive, and family history with DNA methylation patterns using 
an epigenome-wide association study (EWAS) approach. Importantly, we include 
adjustment for potential variation in cellular proportions across samples. Age is the 
strongest risk factor for breast cancer and we have shown that the patterns of age-
related DNA methylation are dependent upon genomic context and that these age-
related methylation patterns were consistent across independent populations of normal 
breast tissue. We found that these molecular alterations become further altered in pre-
invasive as well invasive cancerous lesions. Together, the epigenetic changes we 
identified here provide insights into how breast cancer risk factors are related to disease 
development. 
 
Results: 
Differential DNA methylation is associated with breast cancer risk factors in 
normal breast tissues 
        Patient demographics and characteristics are presented in Table 1. The study 
participants ranged in age from 18 to 82 with a median age of 37. A small proportion of 
participants were underweight (2%; body mass index (BMI) < 18), 40% in the normal 
BMI range (>=18 and < 25), 30% were overweight (>=25 and < 30), and 28% were 
obese (>30). Over half of subjects had at least one full-term birth (56%), and the 
remaining 44% were nulliparous. To test the hypothesis that DNA methylation 
differences in normal breast tissue are related with known breast cancer risk factors we 
used the approach outlined in Additional File 1. Differences in cellular composition 
across samples represents a potential confounder when testing associations between 
DNA methylation and quantitative traits in epigenome-wide association studies (EWAS) 
[14]. Cellular proportions for each sample can be estimated through cytometric methods 
or by applying cell mixture deconvolution algorithms to DNA methylation measurement 
[15, 16]. Cellular proportions can then be incorporated into a statistical model as 
covariates to adjust for potential cellular heterogeneity. In the absence of direct cell 
counts or tissue-specific reference DNA methylomes, statistical methods that account 
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for cell proportion variability across tissue samples without a reference DNA methylome 
have been widely used [15, 17-20]. To this end, we applied a convex non-negative 
matrix factorization approach to estimate the proportion of putative cell types in each 
tissue sample [20]. This approach provides an estimate of cellular proportions across a 
range of putative cell types (K). We identified the optimal number of putative cell-types 
as K = 6 as this estimate minimized the deviance of the bootstraps (see Methods, 
Additional File 2A). To investigate whether the heterogeneity in cellular proportions 
across samples were associated with phenotypic variables (e.g., subject age) we 
applied a quasi-binomial model for each subject. To avoid dependence on the selection 
of K (putative cell types) we examined associations over a range of evaluated K using a 
permutation test (1000 permutations) for inference of each phenotypic variable. As 
shown in Additional File 2B, estimated cell mixture proportions were significantly 
associated with subject age (Permutation P-value = 2.0E-03), but not subject BMI or 
parity (Additional File 2B).  

To study the relation of DNA methylation with breast cancer risk factors we 
applied both unadjusted and cell-type adjusted linear models for microarray (limma) to 
examine the influence of subject age, BMI, and parity on the DNA methylome. Since the 
estimated cellular proportions for each sample sum to nearly one we include all but the 
estimated cell-type with the smallest proportion to avoid multi-collinearity in our models. 
In a multivariable limma model adjusted for differences in cellular mixtures 787 CpG 
sites were significantly associated with age, 0 CpG sites with BMI, and 0 CpG sites with 
parity after correcting for multiple hypothesis testing (Q < 0.01, Figure 1A). The full list 
of 787 CpG sites with genome annotation and statistical results is presented in 
Additional File 3. Notably, age-related DNA methylation alterations were predominantly 
hypermethylation events, that is, increased DNA methylation was associated with 
increased age (545 CpG sites, 69.3%). To assess the impact adjusting for cellular 
proportions had on the identification of significant associations and effect sizes we 
computed the difference between the coefficients (that is, a delta coefficient value) at 
each CpG for the models unadjusted and adjusted for cell-type. A large CpG-specific 
delta value provides evidence for associations between DNA methylation and risk 
factors that may be most confounded by differences in cellular proportions. 
Visualizations of CpG-specific P-values and coefficients from cell-type unadjusted and 
adjusted models demonstrated that adjustment attenuated both strength and magnitude 
of CpG-specific associations (Additional File 4). Moreover, the number of significant 
associations (Q < 0.01) in the unadjusted limma model for subject age was 4,099 CpG 
sites compared with 787 from the adjusted model suggesting that a high number of 
false-positives are likely to be reported when differences in cell-proportions are not 
considered (Additional File 4A-C). In addition, at the age-related CpG sites (n = 787, Q 
< 0.01) the DNA methylation patterns across purified cell populations of myoepthial 
cells, luminal cells, and adipocytes are consistent, suggesting that age-related changes 
may occur largely independent of tissue-type in the normal human breast Figure 1B.  

There was missing family history data for 10 individuals in the present data set. 
To explore whether family history was associated with DNA methylation differences we 
applied the aforementioned limma approach unadjusted and adjusted for cellular 
proportions (n = 90) and found no significant associations (Q > 0.01) between family 
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history and DNA methylation differences after correcting for multiple comparisons 
(Additional File 4D). 

 
Independent validation of age associated methylation           

We next moved to validate our age-related DNA methylation findings in two 
independent 450K data sets from 97 normal adjacent-to-tumor breast samples (TCGA) 
and 18 normal breast tissues from disease-free women (NDRI, GSE74214). Subject 
demographics and characteristics for these two data sets are presented in Table 2. In a 
reference-free cell mixture adjusted limma restricted to the 787 CpG sites identified in 
the discovery (Komen) population we observed that 548 CpG sites (TCGA, 69.4 %) 
were differentially methylated in a direction consistent with discovery population at a 
nominal P < 0.05 Additional File 5A. Similarly, we observed highly consistent results in 
the NDRI population (389 out of 787 CpG sites, 49.4%) Additional File 5B. Strikingly, 
there were 345 CpG sites (43.8 %) in the TCGA data set and 109 CpGs (13.9 %) in the 
smaller NDRI data set that were considered significant at the stringent Bonferroni 
threshold for multiple comparisons (Additional File 5A and 5B, P < 6.4E-05). In both 
validation cohorts, putative cell mixture proportions were significantly associated subject 
age (Permutation P < 0.05) Additional File 5C-4D.  

While it is appreciated that DNA methylation can modify chromatin structure and 
distally regulate the transcriptome, its most well defined function is the cis-regulation of 
gene transcription [21]. In the present study, sample-matched RNA-sequencing data 
was available only for a subset of the subjects from the TCGA dataset (n = 88). Many of 
the age-related CpG sites that localize to gene regions (n = 630 CpG   
sites) demonstrated strong associations with gene expression (259 CpG sites at P < 
0.05, Additional File 6A). The direction of the CpG-gene correlations demonstrated a 
dependency upon genomic context Additional File 6B. For example, CpG sites tended 
to exhibit negative correlations in the promoter region, while there was an even 
distribution of positive and negative correlations in gene body (that is, intron and exon) 
regions (Additional File 6B). 
                                       
Risk factor-associated DNA methylation sites are enriched for regulatory regions 
        To provide a broader biological interpretation of age-related DNA methylation we 
next sought to identify enrichment of these genomic locations in gene regulatory 
regions, such as tissue-specific histone marks and transcription factor binding sites 
(TFBS). First, we employed the eFORGE tool to identify cell-type specific signals in 
diverse tissues profiled by the Roadmap to Epigenomics Consortium. We observed 
robust enrichment of H3K4me1, histone modifications that mark enhancers, in both fetal 
tissues and mammary epithelial cells (Q < 1.9E-37), and modest associations with other 
histone modifications (that is, H3K4me3, H3K27me3) Additional File 7. A Fisher’s 
exact test confirmed age-related CpGs localize to enhancer elements specifically in 
mammary myoepithelial cells (H3K4me1, Roadmap) (OR = 2.00 CI (1.73 – 2.33), P = 
7.1E-20). We next used the genomic coordinates of age-related CpGs as a query set 
against the background of the 450K array in a Locus Overlap Analysis (LOLA) scanning 
for enrichments of TFBSs. Since hypermethylation events are likely to be biologically 
distinct from hypomethylation events at TFBS we stratified our LOLA analysis into a 
hyper- and a hypomethylation enrichment analysis Figure 2A-2B. In the 
hypermethylation analysis, we observed a striking number of significant enrichments for 
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CpG sites hypermethylated with age (14 TFBS, Q < 0.01) and hypomethylated with age 
(8 TFBS, Q < 0.01) Additional File 8A and 8B. Among the several of the top ranking 
results presented in Figure 2A, MYC and CTCF, which are critical regulators of 
chromatin architecture were enriched among hypermethylated CpG sites while 
hypomethylated CpGs localize to binding sites of transcriptional activators c-Fos and 
Stat-3 [22-25]. 
 
Accelerated epigenetic aging of human breast tissue 

It has been recognized that DNA methylation patterns change in a tissue-specific 
manner as an individual ages [26]. Previous studies have found that measurements of 
DNA methylation have the ability to accurately estimate an individual’s age and that 
observed differences between predicted DNA methylation age (that is, biological age) 
and chronological age are associated with disease-risk factors [26-29]. Further, it has 
been observed that DNA methylation age predictions in the human breast demonstrate 
age acceleration when compared with other tissues suggesting that normal breast 
tissue tends to age more quickly than other tissues [26].  

To examine whether the subject-specific differences between biological and 
chronological age (that is, age acceleration) are associated with breast cancer risk 
factors we first calculated DNA methylation age from the 100 Komen normal breast 
tissues using two distinct epigenetic clocks [26, 29]. Briefly, the “Horvath epigenetic 
clock” uses elastic net regression to integrate DNA methylation information from 353 
CpG sites to generate a multi-tissue age predictor. The second method, “epiTOC”, is an 
epigenetic clock that incorporates prior biological knowledge into a mathematical model 
to generate an estimate of mitotic divisions using 385 CpG sites. Notably, there was 
limited overlap between the 787 age-related CpGs and Horvath (17 CpGs) and EpiTOC 
(3 CpGs). In analyses with the Horvath clock, we observed a strong positive correlation 
between chronological age and DNA methylation age of the Komen breast tissues with 
a Spearman correlation coefficient of 0.95 (P = 2.83E-52, Figure 3A). In univariate 
analyses of age acceleration, defined as the residual resulting from regressing DNA 
methylation age (Horvath clock) on chronological age, and the cancer risk factors listed 
Table 1 we observed a significant positive association only with race (African-American, 
P = 3.5E-02). Age acceleration was not associated with any other of the evaluated risk 
factors (P > 0.05). In a multivariate model considering all measured cancer risk factors, 
we found that race was significantly associated with increased epigenetic aging 
(African-American, P = 4.9E-02). In contrast to the Horvath clock, there was no 
significant correlation between chronological age and epiTOC predicted age (P = 7.5E-
01, Figure 3B). Nonetheless, the epiTOC estimated biological age was also positively 
associated with race in univariate analyses (African-American P = 2.1E-02, Hispanic P 
= 2.8E-02) and in multivariate models including all Table 1 risk factors (African-
American, P = 2.7E-02 and Hispanic, P  = 2.7E-02). The remaining breast cancer risk 
factors were not associated with epiTOC-defined biological aging in either univariate or 
multivariate models (P > 0.05).  
 
Age-related DNA methylation is further deregulated in pre-invasive and invasive 
breast cancer 

To ascertain whether disease risk factor related DNA methylation differences are 
relevant for the development of cancer we compared DNA methylation in breast tumors 
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with adjacent normal in both pre-invasive and invasive cancer at the 787 age-related 
CpGs. In pre-invasive lesions (ductal carcinoma in situ, DCIS), there were 268 CpG 
sites among 775 CpGs available for measure (34.5%) that demonstrated differential 
methylation between DCIS and normal using limma models adjusted for subject age 
Figure 4A (P < 0.05). Importantly, changes at the age-related CpGs were greater 
(Additional File 9A and 9B) and demonstrated stronger associations than a randomly 
selected set of CpG sites with a similar genomic distribution Figure 4B (Kolmogorov-
Smirnov test, P = 3.0E-03). If the epigenetic defects in age-related DNA methylation are 
further deregulated in pre-invasive breast cancer it would be expected that progressive 
changes would occur in invasive breast cancer. To test this end, we assessed 
differential methylation using limma models adjusted for subject age in the TCGA breast 
cancer data set. A large proportion of the age-related CpGs exhibited significant 
differential DNA methylation changes in breast cancer, 642 out of 787 CpGs (81.6%, P 
< 0.05) Figure 4C. Again, we found that the age-related changes demonstrated greater 
DNA methylation differences (Additional File 9C and 9D) and stronger associations 
than a randomly selected set of CpGs (Kolmogorov-Smirnov test, P = 1.1E-13) Figure 
4D. 
 
Discussion: 

In this study, we identified perturbations in the normal breast epigenome that 
may contribute to age-related increases in breast cancer risk. Age is the strongest 
demographic risk factor for breast cancer and is robustly associated with DNA 
methylation changes. Emerging literature has demonstrated that aging exerts it 
profound effects on the epigenome through a lifetime accumulation of environmental 
exposures that interfere with the placement or removal of methyl groups [12, 13, 30, 
31]. Here, we have described that the consistent changes in breast DNA methylation 
are not randomly distributed throughout the genome. Instead, age-related DNA 
hypermethylation events are enriched for breast epithelial-specific enhancer regions 
and the binding sites of chromatin remodelers while hypomethylation was noted at 
transcriptional activators. The enrichment of modifications at critical regulators of 
cellular phenotype provide novel insights into how cell type-specific epigenetic states 
change over time and may predispose cells to neoplastic transformation. Our analysis 
revealed that further DNA methylation alterations to these genomic regions in pre-
invasive and invasive disease may contribute to the restriction of cellular differentiation 
and disruption of transcriptional control observed in cancerous lesions.  

The ability to produce reliable biological age predictions for an individual as well 
as specific tissues holds promise for monitoring health, predicting disease risk, and 
providing insights about modifiable lifestyle factors that promote healthy aging. Indeed, 
discrepancies found between chronological and biological age may suggest 
deregulation in DNA methylation marks and indicate increased disease risk. Horvath et 
al. demonstrated this phenomenon of age-acceleration in a recent publication where 
researchers found that the epigenetic age of liver was increased by 2.7 years for every 
10 units of body mass index [27]. Using 450K methylation arrays we have applied the 
Horvath epigenetic clock algorithm and epiTOC tool to 100 normal tissue samples to 
determine the DNA methylation age of each of these tissues. The association between 
age acceleration and race produce novel hypotheses for risk given the observation that 

. CC-BY-NC-ND 4.0 International licensepeer-reviewed) is the author/funder. It is made available under a
The copyright holder for this preprint (which was not. http://dx.doi.org/10.1101/101287doi: bioRxiv preprint first posted online Jan. 19, 2017; 

http://dx.doi.org/10.1101/101287
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

8 

African-American women tend to be diagnosed with breast cancer at an earlier age [32]. 
In future studies, the ability to accurately assess biological age in breast tissue samples 
from larger longitudinal studies with a greater number of African-American and Hispanic 
women may aid researchers in the determination of factors that aim to assess and 
prevent disease. 

While our findings provide strong evidence for a link between epigenetic 
deregulation and the two processes of aging and cancer our study holds a few 
limitations. For example, although the RefFreeEWAS method effectively accounts for 
the largest sources of variation in the DNA methylation data set the method is unable to 
discern in which particular cell-types the epigenetic changes occur. That said, the 
robustness of cell-type independent observation across multiple populations and 
progressive alterations in cancer gives us confidence that a subset of the epigenetic 
defects may be important in carcinogenesis. To this end, future prospective studies are 
needed to investigate the relation of DNA methylation in normal tissue with risk of 
developing breast cancer. Research aimed at early detection and disease prevention 
would serve to relieve patient morbidity and reduce extra cost to the healthcare system.  
In summary, we have shown that epigenetic differences are strongly associated with 
aging and these differences may reflect epigenetic defects that predispose women at an 
older age to an increased risk of breast cancer.   
 
Conclusions: 

Epidemiological studies have firmly established factors of personal choice as well 
as factors beyond personal choice that alter risk of breast cancer. Established risk 
factors for breast cancer include age, reproductive and family history, as well as body 
mass index (BMI) [5, 33]. Indeed, modeled breast cancer risk factors have been shown 
to account for approximately half of breast cancer cases [34, 35]. However, the 
biological mechanisms by which specific risk factors impact disease risk are not well 
understood. In this study population, we did not observe significant associations 
between BMI or parity and genome-wide DNA methylation. However, we observed 
consistent cell-type independent age-related DNA methylation in multiple populations of 
normal breast tissue. The genomic locations of age-related DNA methylation were more 
likely to be found in gene regulatory elements of breast epithelial cells suggesting a loss 
of cellular state control as an individual ages. Further, we demonstrate additional 
support for a link between age-related DNA methylation and cancer, as age-related 
CpG sites were more likely to exhibit greater alterations in both pre-invasive and 
invasive breast cancer. Together, our research suggests that DNA methylation changes 
in aging shifts the epigenetic state toward a compromised molecular phenotype creating 
a novel link between risk factors and potential disease origins in breast cancer. 
 
Methods: 
Study population 
The discovery population consisted of 100 cancer-free women who donated breast 
tissue biopsy specimens to the Susan G. Komen Tissue Bank after providing written 
informed consent. We selected biospecimens from women with a biopsy that scored for 
a high proportion of epithelial cells as determined by the Susan G. Komen Tissue Bank 
study pathologist (n=100) [36]. The sample population was selected for an 
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approximately equal distribution of parous and nulliparous women, and to include a 
wide age range of subjects. Subject demographic and breast cancer risk factors were 
collected from tissue donors using a questionnaire administered by the Susan G. 
Komen Tissue Bank. Family history of cancer was defined by whether or not the donor 
had at least one first-degree blood relative (i.e., mother or sister) diagnosed with breast 
cancer. 
 
DNA methylation quantification and normalization 
Fresh frozen tissue samples were manually dissected and DNA was extracted using 
Qiagen DNeasy Blood and Tissue Kit according to manufacturer’s protocol (Qiagen, 
Valencia, CA, USA). DNA was quantified using a Qubit fluorometer and 1ug of DNA 
was then bisulfite modified using the EZ DNA methylation kit (Zymo research, Orange, 
CA, USA) according to manufacturer’s recommended protocol. The resulting material 
was used as input for the hybridization on the Infinium HumanMethylation450 BeadChip 
(Illumina, San Diego, CA, USA). Samples were randomized to plates and subjected to 
epigenome-wide DNA methylation assessment. The methylation status for each CpG 
locus was calculated as the ratio of fluorescent signals (β = Max (M, 0) / [Max(M,0) 
+Max(U,0)+100]), ranging from 0 (non-methylated) to 1 (completely methylated), using 
average probe intensity for the methylated (M) and unmethylated (U) alleles. 
Normalization and background correction of raw signals was performed using the 
FunNorm procedure available in the R/Bioconductor package minfi (version 1.10.2) [12]. 
Illumina probe-type normalization was carried out with beta-mixture quantile 
normalization (BMIQ) [37]. Prior to analysis we removed CpG sites on sex 
chromosomes as well as those corresponding to probes previously identified as cross-
reactive or containing SNPs, resulting in 390,292 CpGs remaining for analysis [38]. 
 
Validation in Independent Populations and The Cancer Genome Atlas 
Independent breast tissue samples were available from the National Disease Research 
Interchange (NDRI, GSE74214, n = 18) and The Cancer Genome Atlas Database 
(TCGA, n = 97) [39]. Raw intensity data (IDAT) files were available for both studies and 
DNA methylation data was processed and normalized using the same methods 
described above. Likewise, raw DNA methylation IDAT files were accessed and 
processed using the same methods outlined above for both ductal carcinoma in situ 
(n=55, GSE66313) and invasive ductal carcinoma (n=749, TCGA) to compare DNA 
methylation differences between normal-adjacent tissue and pre-invasive or invasive 
lesions [9]. 
 
Statistical Analysis 
All data analysis was conducted in R version 3.3.1.  
 
Cell-Mixture Deconvolution. Adjustment for variation in cellular proportions can be 
achieved in the absence of referent DNA methylation dataset from characterized cell 
types [15, 20]. To perform a reference-free epigenome-wide association study (EWAS) 
we used the R package RefFreeEWAS to deconvolute the cellular populations present 
in the tissue biopsy samples using DNA methylation data as detailed previously in 
Houseman et al. [20]. Briefly, this method seeks to represent the largest axes of 
variation in the DNA methylation data set and decomposes the DNA methylation data 
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for a sample of heterogeneous cell populations into its constituent methylomes. As a 
convex variant of non-negative matrix factorization, the RefFreeEWAS method is similar 
to approaches used to deconvolute gene expression levels in heterogeneous tumor 
tissues [40, 41]. In the present study, we selected the 10,000 most variable CpGs in 
each data set and used a bootstrap technique (specifically sampled the specimens with 
replacement 1,000 times) to estimate the optimal number of putative cell types (K). The 
optimal number of cell-types defined in each data set were: K = 6 (Komen), K = 10 
(TCGA adjacent normal), and K = 2 (NDRI normal breast). The discrepancy in 
estimated cell-types for each population can be explained in part by sample size (i.e., 
small for NDRI population) and potential epigenomic field defects in normal-adjacent to 
tumor tissue (i.e., TCGA). 
 
Analysis of CpG-Specific Associations. We used a multivariable limma procedure as 
described in the R/bioconductor library limma [42] to model CpG-specific associations 
between logit-transformed beta values (i.e., M-values) and breast cancer risk factors 
(e.g., age, body mass index, parity). Genome-wide significance was determined by 
taking into account the false discovery rate with a threshold of statistical significance set 
at Q = 0.01. We ran separate multivariate limma models both unadjusted and adjusted 
for putative cell proportions to assess the impact of cell proportion differences on 
significant associations and effect-size estimates. To identify loci that may be most 
confounded by differences in cell-type we calculated the difference in the effect size 
estimates (i.e., delta coefficient value) between the cell-type unadjusted and adjusted 
models. 
 
Associations with Metadata. To test the associations between putative cellular 
proportions and subject metadata (e.g., age) we applied the methods described in 
Houseman et al. to fit a quasi-binomial model for each putative cell-type across the data 
set [20]. More specifically, for each estimated value of K (that is, total number of cell-
types), we generated a model for each cell-type (1 to K) and used the minimum P-value. 
We then computed the permutation distribution of these minimum P-values (spanning 
all potential values of K).  
 
Genomic Region Enrichment. To assess the enrichment of risk factor-related CpG sites 
at cell type-specific histone modifications we used the eFORGEv1.2 tool with the 
selected option of all H3 marks measured for the consolidated Roadmap to 
Epigenomics data set [43]. To examine whether risk factor-related CpGs were 
associated with transcription factor binding sites in ENCODE data we used the Locus 
Overlap Analysis (LOLA) software [44]. In this analysis, our query input set of genomic 
regions to be tested for enrichment were the genomic locations of the risk factor-related 
CpG sites (Q < 0.01) and the background set was the genomic locations of the 390,262 
CpGs used in the entire analysis. For the LOLA analysis, the ENCODE transcription 
factor binding sites included 42 different ChIP-seq experiments. 
 
Epigenetic Clock Analysis. DNA methylation age (biological age) for the Komen breast 
tissues was calculated using the Horvath and EpiTOC methods [26, 29]. 
 
Availability of data and materials: 
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The DNA methylation microarray data from healthy Komen Tissue Bank donors that 
support the findings of this paper have been deposited in the Gene Expression 
Omnibus with the accession codes GSE88883 (http://www.ncbi.nlm.nih.gov/geo/). The 
DNA methylation microarray data from an independent population of non-disease breast 
tissue (NDRI) have been deposited in the Gene Expression Omnibus with the accession 
codes (GSE74214). Level 1 IDAT and Level 3 normalized RNASeqV2 
rsem.genes.normalized_results were downloaded from The Cancer Genome Atlas 
breast cancer project (TCGA, http://cancergenome.nih.gov). R code used for analyses 
presented in this manuscript has been deposited in the “Normal-Breast-Methylation” 
repository on github (https://github.com/Christensen-Lab-Dartmouth). 
 
List of abbreviations: 
5mC, 5-methylcytosine; CpG, Cytosine-guanine dinucleotide; TCGA, The Cancer 
Genome Atlas; NDRI, National Disease Research Interchange; TFBS, transcription 
factor binding site; PCGT, Polycomb group protein target; TSS, transcriptional start site; 
KEGG, GEO, Gene Expression Omnibus; epiTOC, Epigenetic Timer of Cancer; IDAT, 
intensity data file; limma, linear models for microarray data; ENCODE, Encyclopedia of 
DNA Elements; LOLA, locus overlap analysis; BMI, body mass index; EWAS, 
Epigenome-wide association study; RefFreeEWAS, Reference-Free DNA Methylation 
Mixture Deconvolution Epigenome-wide association study 
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Figure Legends: 
Figure 1. Subject age is strongly associated with DNA methylation in normal breast 
tissue independent of cell-type. A. In the volcano plot, each point represents the 
associations between DNA methylation and age from cell-type adjusted multivariable 
limma models at individual CpG sites. Increasing -log10(P-value) values on the y-axis 
show increasing statistical significance and limma effect size on the x-axis positioned 
away from the zero value reveal the largest DNA methylation changes with age. 
Significant CpG sites are indicated in red (Q-value < 0.01). The gene and gene regions 
are presented for the 5 CpG sites with the greatest significance. B. Unsupervised 
clustering of DNA methylation values at age-related CpG sites (Komen, n = 100) 
visualized alongside CpGs measured in specific cell-types form the Roadmap to 
Epigenomics data set (n = 691 CpG sites). Each column represents a given tissue 
sample and each CpG in presented in rows.  
Figure 2. Age-related DNA methylation is enriched for regions of chromatin remodeling 
and transcriptional control. A. Hypermethylated with age CpG sites and B. 
hypomethylated with age CpG sites are highly enriched at the binding sites of 
transcription factors. 
Figure 3. The relation between epigenetic clocks and cancer risk factors. A. The 
Horvath epigenetic clock age in normal breast tissue is highly correlated with subject 
age (P = 2.83E-52). Age acceleration was significantly (P < 0.05) larger in African-
American women. B. DNA methylation age as generated by the epiTOC tool was not 
correlated with subject age in normal breast tissue (P > 0.05). Higher DNA methylation 
age was associated subject race as breast tissue from African-American and Hispanic 
women demonstrated increased DNA methylation age (P < 0.05).  
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Figure 4. DNA methylation differences between tumor and normal breast tissue at age-
related CpG sites in both A-B. ductal carcinoma in situ (DCIS) and C-D. invasive breast 
cancer.    
 
 
Additional Files: 
Additional File 1: Analytic framework for reference-free epigenome-wide association 
study between DNA methylation and breast cancer risk factors. 
Additional File 2: Estimation of cellular proportions and its association with subject 
covariates. A. Hierarchal clustering and heatmap representation of cellular proportions 
of putative cell-types (K = 6) in Komen normal breast tissue (n = 100). B. Metadata 
associations with cellular proportions when K is estimated over a range of cell types. 
Permutation P-values presented adjacent to the colored line representing each 
covariate (e.g., red for age, permutation P = 2.0E-03). 
Additional File 3: Age-related CpGs and genomic annotation 
Additional File 4: Volcano plots representing both cell-type proportions adjusted and 
unadjusted limma models for each covariate evaluated in the present study. In each 
cell-type adjusted volcano plot (right panels) the intensity of blue and red colored points 
indicate shift in the effect size of the limma coefficient estimate between adjusted and 
unadjusted models. That is, gray points in the right panels indicate CpG sites that are 
not impacted by differences in cellular proportions across A. subject age (n =100) B. 
subject BMI (n = 100) C. parity status (n =100) D. and family history of disease (n = 90). 
Additional File 5: Age-related DNA methylation in the human normal breast validates 
in A. adjacent-to-tumor normal breast from The Cancer Genome Atlas (TCGA, n = 97) 
population and B. the National Disease Research Interchange (NDRI, n = 18) normal 
breast tissue population. Volcano plots indicate CpG-specific associations between 
DNA methylation and subject age. Permutation testing of subject covariate data across 
estimated cell-types (K) in C. TCGA population and D. NDRI population. 
Additional File 6: Age-related CpG sites are associated with gene transcription. A. 
Distribution of P-values for CpG-gene expression correlations B. Genomic-context 
dependency between DNA methylation and gene expression. Gene names for the 20 
CpG-gene regions with the strongest associations are presented alongside its 
respective coefficient-P-value bubble. 
Additional File 7: Complete results from eFORGE analysis of age-related CpGs 
(n=787). 
Additional File 8: Complete results from LOLA analysis of age-related CpGs (n=787). 
Additional File 9: A-B. DNA methylation differences between DCIS and normal 
adjacent in limma coefficients (that is, effect size) for age-related (n =787) and randomly 
selected loci (n = 787) C-D. DNA methylation differences between invasive breast 
cancer and normal adjacent in limma coefficients (that is, effect size) for age-related (n 
= 787) and randomly selected loci (n = 787). 
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Tables:  

Table 1. Subject demographics and 
characteristics (n=100) 

Age (median, range) 37.2 (18 - 82) 

BMI (median, range) 27.6 (16.8 - 53.7) 

Pregnant (Parity) 

     No 44 

     Yes 56 

Family History 

     No 44 

     Yes 46 

     missing 10 

Race  

      African American 5 

     Hispanic 9 

     White 86 

Alcohol Consumption - Drinks per week, n (%) 

     Not Current Drinker 28 

     < 7  64 

     7 to 14 5 

    15 to 21 2 
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Table 2. Independent Population 
Subject Chacteristics 
NDRI 
  Mean (Range) n = 18 
Age 49 (13-80)   
BMI 28.3 (14.59-62.73)   
      
TCGA 
  Mean (Range) n = 97 
Age 57.57 (28-90)   
BMI  Unavailable   
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