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This phenotype prevalence contributes to disparities in breast cancer outcomes between African
Americans and White Americans. Breast cancer stem cells represent the tumor subpopulation involved in
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Triple-negative breast cancer (TNBC) is the term commonly
used to describe cancers that are negative for the expression
of estrogen and progesterone receptors and that lack over-
expression of tyrosine kinase-type cell surface receptor
HER?2/Neu. Approximately 80% of TNBC tumors have the
inherently aggressive basal breast cancer subtype as defined
by gene-expression studies; the TNBC phenotype is there-
fore often used as a surrogate to identify patients with the
biologically unfavorable basal subtype. The absence of
expression of these three biomarkers also carries clinical
relevance with regard to the mechanisms of currently
available targeted therapies for breast cancer. An array of
selective estrogen receptor modulators and aromatase in-
hibitors can be offered as endocrine therapy for patients with
hormone receptor—positive breast cancer, and targeted anti-
HER2 agents are effective in managing HER2/Neu-over-
expressing breast cancers. Systemic therapy is especially
important in addressing the virulent nature of most TNBC
cases, but general, nontargeted chemotherapy remains the
standard-of-care, routine approach.

Recent data suggest that breast cancers are heterogeneous
and that only a small and discrete subpopulation of cells

within a tumor, called the breast cancer stem cells (BCSCs),
possesses self-renewal capacity and the ability to establish
metastatic colonies.'~

Population-based breast cancer mortality rates are higher
among women who self-identify as African American
compared with White Americans (alias Caucasian Americans).
The burden of breast cancer mortality is also elevated among
African women residing on the continent of Africa. These two
populations will be described as having African ancestry.

TNBCs, BCSCs, and breast cancer patients of African
ancestry represent three distinct topics that feature at least one
common denominator: an association with increased breast
cancer virulence. Each of these topics can be furthermore
correlated with one another to varying degrees: i) TNBC is
more common among women of western, sub-Saharan Afri-

can ancestry” *; ii) TNBC/basal subtype tumors are enriched
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with populations of cells that express BCSC markers’™'’; and

iii) breast cancer patients of western, sub-Saharan African
ancestry have an increased prevalence of tumors that express
stem cell markers."'™'*

The extent to which the correlations described above
represent evidence of genetic/hereditary variation in BCSCs
associated with African ancestry versus representing the
true, true and unrelated non sequitur remains uncertain. This
review will summarize the published literature on TNBC,
BCSCs, and their possible relationships with African
ancestry. Our group has introduced the term oncologic
anthropology as a transdisciplinary field of study that
combines the expertise of social scientists, geneticists, and
translational oncologists in an effort to address these com-
plex issues."”

Breast Cancer Disparities, TNBC, and African
Ancestry

Background: Epidemiology and Socioeconomic Status

Disparities in breast cancer outcomes related to racial/ethnic
identity have been well documented for several decades, with
the most prominent correlation being higher mortality rates
among African-American compared with White-American
women.'®'” Poverty rates and inadequate health insurance
coverage are also more common in the African-American
compared with White-American communities, and these so-
cioeconomic disadvantages likely contribute to the disparities
in breast cancer outcomes by causing delays in diagnosis,
more advanced stage distribution at diagnosis, and inadequate
multidisciplinary breast cancer treatment.'® * The down-
stream effects of impaired health care access do not
completely explain the disparities in breast cancer outcomes,
as African Americans have worse survival rates even after
controlling for stage at diagnosis.'>*' An evaluation of race/
ethnicity-associated variations in primary tumor biology is
therefore warranted, and the presence of such differences is
supported by additional epidemiologic data regarding the
burden of breast cancer in diverse population subsets.
Historically, population-based incidence rates of breast
cancer have been lower in African-American compared with
White-American women, and fluctuations in incidence have
typically occurred in parallel. Paradoxically, however,
population-based breast cancer mortality rates were similar in
both groups until the early 1980s, at which point the mortality
curves separated as a consequence of declining mortality rates
in White Americans contrasted against relatively stable mor-
tality rates in African Americans. The mortality gap that
emerged very likely reflected the unmasking of differences in
the biology of breast cancer between African-American and
White-American women related to the prevalence of
biomarker expression and the development of targeted therapy
for breast cancer. Tamoxifen became approved as systemic
therapy for breast cancer in 1977, and this endocrine agent
represents the first targeted therapy for breast cancer,
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improving outcomes in hormone receptor—positive disease.
Tamoxifen-related reductions in population-based mortality
rates became apparent by the early 1980s, but these benefits
were predominantly experienced by the White-American pa-
tient population, because hormone receptor—positive breast
cancer is twice as common among White Americans
compared with African Americans.””

Population-based breast cancer incidence rates have been
rising disproportionately among African Americans in
recent years, and these rates have now converged with those
of White Americans.'® Rising incidence of breast cancer
coupled with the disproportionately high frequency of the
biologically aggressive TNBC phenotype in African-
American women have resulted in worsening of the breast
cancer population—based mortality gap, and this disparity is
now a difference of 42%.'°

Disparities: Socioeconomic Status versus Tumor
Biology

A variety of epidemiologic and statistical research tools have
been utilized in the effort to disentangle the effects of African-
American identity from the potentially confounding in-
fluences of socioeconomic disadvantage on breast cancer risk
and outcome. Two sequential meta-analyses published in
2002 and 2006°* pooled the data from publications on breast
cancer survival that adjusted for socioeconomic status in
African-American compared with White-American patients,
with both demonstrating that African-American identity
remained a statistically significant risk factor for adverse
outcomes. The latter report featured data represented by
>14,000 African-American and 76,000 White-American pa-
tients, revealing a statistically significant mortality hazard
ratio of 1.27 (95% CI, 1.18—1.38).**

Another approach to evaluating breast cancer disparities
related to racial/ethnic identity involves the evaluation of
data from clinical trials. The bedrock principle of the cancer
clinical trials mechanism is that highest-level evidence
regarding optimal oncology care is provided through moni-
toring outcomes in patients receiving tightly regulated and
standardized treatment regimens. Albain et al* attempted to
address the question of whether equal treatment in the
context of clinical trial participation resulted in equal out-
comes (regardless of racial/ethnic identity) by evaluating
data from prospective, randomized trials from the Southwest
Oncology Group. This robust pooled analysis of data from
nearly 20,000 cancer patients (approximately 12% African
Americans) treated in 35 trials between 1974 and 2001 found
that racial/ethnic identity did not affect outcomes in the
majority of malignancies, but results differed in the hor-
monally driven, sex-specific cancers. Outcome disparities
related to African-American identity were observed in breast,
prostate, and ovarian cancers, but not in lung or colon can-
cer, or in lymphoma, leukemia, or myeloma. Ten-year
overall survival in premenopausal African-American
women with early-stage breast cancer was 68% compared
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with 77% in comparable patients with other racial/ethnic
identities, and 52% versus 62%, respectively, in those with
early-stage, postmenopausal breast cancer.”

The Women’s Health Initiative is a massive prospective
study of postmenopausal women’s health that includes data
on the incidence of breast cancer among >150,000 partic-
ipants. After a median follow-up of 6.3 years, nearly 4000
breast cancers were diagnosed, and among this entire cohort
of carefully screened women, the African-American par-
ticipants were nearly five times as likely as the White
Americans to develop high-grade, receptor-negative breast
cancers, and the group had a significantly higher mortality
hazard ratio of 1.79 (95% CI, 1.05 to 3.05).26 The expres-
sion of the HER2/Neu biomarker was not included in this
analysis.

The approximately twofold increased risk for TNBC in
African-American women has been confirmed by population-
based incidence rates regionally”’ as well as nationally,’ and
across all age intervals. Compared with non-TNBC, triple-
negative disease has been confirmed to be an adverse
prognostic feature in African-American patients.” It is also
noteworthy that data from the Surveillance, Epidemiology, and
End Results Program linked to the American Community
Survey failed to demonstrate an association between TNBC
and socioeconomic status.”’

International patterns of breast cancer biomarker expres-
sion have prompted additional hypothesis-generating obser-
vations regarding a possible hereditary link between African
ancestry and the triple-negative phenotype. Population-based
data on breast cancer burden in Africa are sparse, but several
studies have revealed notably higher frequencies of estrogen
receptor—negative disease and TNBC among African pa-
tients.”’*' The highest prevalence rates are observed in
western, sub-Saharan Africa, where triple-negative disease
has accounted for 27% to 61% of cases.>> >’ In contrast, the
frequency of TNBC is <20% in many studies in patients from
northern and eastern Africa.””® *' The colonial-era trans-
Atlantic slave trade resulted in the forced migration of
Africans from the continent’s gold coast to the Americas,
resulting in shared ancestry between African Americans and
western, sub-Saharan Africans’” and potentially explaining
similarities in breast cancer patterns in these two population
subsets.

Biology and Genetics of TNBC

TNBCs have morphologic growth patterns illustrating het-
erogeneity and highlighting distinctive biological features,
clinical presentations, responses to therapy, and outcomes.
There are several morphologic variants, with the high his-
tologic grade invasive ductal carcinoma being the most
common, associated with high mitotic rates, central necrotic
or fibrotic zones, pushing borders, and conspicuous lym-
phocytic infiltrate. Other morphologies that are typically
triple negative include medullary, secretory, and apocrine
carcinomas—all of which have relatively more favorable
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biologic behaviors—and metaplastic carcinomas, which
tend to be biologically more aggressive. This heterogeneous
morphologic spectrum of subtypes is further supported and
defined by diverse genetic pathways. Lehmann et al** were
among the early investigators identifying these triple-
negative subtypes, and their efforts were based on ana-
lyses of gene-expression profiles from 21 publicly available
data sets that included 587 TNBC cases. They identified six
different subtypes—two basal-like subtypes, an immuno-
modulatory subtype, a mesenchymal subtype, a mesen-
chymal stem—Tlike subtype, and a luminal androgen receptor
subtype. Similarly, Burstein et al** identified four TNBC
subtypes based on the gene-expression profiles of 198 cases
from the Baylor College of Medicine (Houston, TX): i) a
luminal androgen receptor subtype; ii) a mesenchymal
subtype; iii) a basal-like immune-suppressed subtype; and
iv) a basal-like immune-activated subtype. These different
patterns have been shown to be associated with prognostic
as well as predictive therapeutic value; the luminal androgen
receptor subtype tends to respond poorly to neoadjuvant
chemotherapy’”*® and may be amenable to endocrine
manipulation through anti-androgen therapy. Unfortunately,
however, neither of these data sets included meaningful
samples of triple-negative tumors from women of African
ancestry.

A few studies have provided limited but important findings
with regard to gene-expression profiles of African-American
breast cancer patients. Lindner et al*’ evaluated 136 tumors
from the Yale TNBC cohort (including 50 African-American
patients) and found basal-like subtypes to be more common
among the African-American cases; they also reported dif-
ferential activation of insulin-like growth factor 1 and a
signature of breast cancer 1 susceptibility protein (BRCA1)
deficiency in the African-American samples. Keenan et al*®
utilized The Cancer Genome Atlas to investigate exome
sequencing in 663 White-American compared with 105
African-American cases, and gene-expression data in 711
White-American compared with 159 African-American cases.
The African Americans had more basal tumors overall, and
within the triple-negative category they were also more likely
to have the basal-like and mesenchymal triple-negative sub-
types. Recently, Ademuyiwa et al*’ evaluated 1104 Cancer
Genome Atlas breast cancers (including 178 triple-negative
tumors) and similarly found the triple-negative phenotype as
well as the basal subtype to be more frequent in African
Americans compared with White Americans (33.3% vs 14.9%
and 34.8% vs 16.1%, respectively). TNBC-specific subtyping
was not reported, but these investigators did not identify sig-
nificant differences in gene-expression patterns between
African-American and White-American TNBC cases in the
genes that were selected for analysis. Huo et al’” also reported
on the increased frequency of basal subtype tumors among
African-American compared with White-American cases
from The Cancer Genome Atlas, and their The Cancer
Genome Atlas interrogation furthermore suggested that
>40% of differences in frequencies of breast cancer subtypes
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Table 1  Studies Reporting on the Landscape of Somatic Mutations in Breast Cancers of African-American and White-American Patients
Study Cases studied Selected findings
Martin et al®! Baltimore, MD e Prominent interferon signal in tumors of AA patients

Field et al*

Grunda et al*®

Stewart et al**

Lindner et al*’

Kroenke et al*®

Sweeney et al*®

Keenan et al*®

Ademuyiwa et al*

Huo et al*®

18 AA (72% ER-negative)
17 WA (29% ER-negative)

Clinical Breast Care Project
26 AA (38% TNBC)

26 WA (35% TNBC)
Birmingham, AL

11 AA (45% ER-negative)
11 WA (9% ER-negative)

The Cancer Genome Atlas
53 AA (19% TNBC)
574 WA (12% TNBC)

Yale TNBC Cohort
50 AA
69 WA

Pathways and Life after Cancer
Epidemiology Cohorts

128 AA (30% TNBC)

1176 WA (11% TNBC)

Pathways and Life after Cancer
Epidemiology Cohorts

115 AA*

913 WA*

12% of entire cohort with TNBC;
frequencies not reported by
race/ethnicity

The Cancer Genome Atlas

159 AA (17% TNBC)

711 WA (8% TNBC)

The Cancer Genome Atlas
183 AA (33% TNBC)
764 WA (15% TNBC)

The Cancer Genome Atlas
154 AA
776 WA

e Phosphoserine phosphatase-like expressed more highly in tumor

epithelium and stroma of AA patients

e Thymopoietin expressed more highly in stroma of AA patients
e Chemokine ligands 10 and 11 expressed more strongly in tumor stroma of

AA patients
BB2-crystallin; lactotransferrin; and L-3-phosphoserine-phosphatase
homologue expressed more strongly in AA patients

e AA patients more likely to have aberrant G1/S cell-cycle regulatory genes
e AA patients more likely to have decreased expression of cell adhesion

genes

e AA patients more likely to have low or no expression of ESR1, PR, c-ErbB2

and estrogen pathway genes

e Increase in number of differentially expressed genes between AA and WA

patients with each stage of tumor progression

Resistin (a gene that is linked to obesity, insulin resistance, and breast
cancer) was expressed more than four times higher in AA cases, but was
lowest in AA TNBC tumors

e Increased expression of p53 and BRCA1 subnetwork components in AA

tumors

Major transcriptional signature of proliferation found to be up-regulated
in AA cases

Differential activation of insulin-like growth factor 1 and a signature of
BRCA1 deficiency in AA cases

e TNBC subtyping revealed AA cases more likely to have basal subtype

compared with WA cases
PAM50 subtyping revealed increased frequency of basal subtype
among AA compared with WA cases (41% vs 17%)

PAM50 subtyping revealed increased frequency of basal subtype
among AA cases; odds ratio for having basal vs luminal A subtype
(with WA as referent group) 4.38 (95% (I, 2.29—8.39)

PAM50 subtyping revealed increased frequency of basal subtype in AA
cases (39% vs 19%) and fewer luminal A tumors (17% vs 35%)

e TNBC subtyping revealed increased frequency of basal-like 1 and

mesenchymal stem-like tumors in AA vs WA cases; no LAR tumors in the AA
cases

PAM50 subtyping revealed increased frequency of basal subtype in AA
cases (35% vs 16%)

e Median counts of somatic tumor mutations higher in AA vs WA cases overall
e No significant differences in median mutation counts for AA TNBC

compared with WA TNBC cases
PAM50 subtyping revealed increased frequency of basal subtype in AA
cases (36% vs 15%; P < 0.0001)

e AA cases with more TP53 and fewer PIK3CA mutations compared with WA

[52% vs 31% (P = 2.5 X 1075) and 24% vs 36%; (P = 0.012),
respectively]; African ancestry vs European ancestry cases defined by
Ancestry Informative Markers

*Estimated from percentage distributions provided.

AA, African American; BRCA, breast cancer susceptibility protein; c-ErbB2, receptor tyrosine-protein kinase erbB-2; ER, estrogen receptor; ESRI, estrogen
receptor 1; LAR, leukocyte common antigen related; PAM50, Prosigna Breast Cancer Prognostic Gene Signature Assay (NanoString Technologies, Inc, Seattle,
WA); PR, progesterone receptor; TNBC, triple-negative breast cancer; WA, white American.
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may be explained by genetic variants. Table | summarizes
some key findings from gene-expression studies reported on
cases of breast cancer in African-American compared with
White-American patients.”'°

The disproportionately high rates of triple-negative and
basal breast cancer subtypes among African-American pa-
tients undoubtedly contributes to outcome disparities. Avail-
able data thus far are inconsistent in determining whether
African-American identity and/or African ancestry remains a
significant risk factor for adverse breast cancer outcomes
within the subsets of patients documented as having these
biologically aggressive (and often overlapping) patterns of
disease.”’ ®” TNBC subtyping in patients with African
ancestry may further inform the discussion of whether dis-
parities in breast cancer outcomes persist after accounting for
conventional breast cancer phenotype. Furthermore, addi-
tional studies of germline genetics correlating African
ancestry with breast cancer risk are also imperative in
answering the underlying question of why these virulent pat-
terns of breast cancer are more common in this population
subset.

Breast Cancer Stem Cells and TNBC

The hallmark feature of stem cells is the ability to self-renew
and to produce diverse progeny. Mammary stem cells
(MaSCs) were identified several decades ago and are distin-
guished by the capacity to regenerate a fully developed
mammary gland after individual implantation of these multi-
potent cells into specially prepared recipient mice.® %’
Theoretically, any cell produced along the pathway from the
parent MaSC through a multipotent progenitor, to a committed
progenitor, and ultimately to a differentiated mammary gland
cell can experience some aberrant oncogenic activity and
transform into a mammary cancer stem cell, hereafter called a
BCSC. Differentiated epithelial cells are expected to interact
with their microenvironment in a well-regulated fashion, but
they will occasionally be triggered to assume mesenchymal

Mammary Stem Cell

(MasC) CO Self-Renewal

Multipotent
Progenitor
Committed
Progenitors ‘
/ \ ————»‘ sé —

Oncogenic Transformation

Luminal

Myoepithelial Cells
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properties featuring the capacity to migrate and avoid
apoptosis. This process is called epithelial-to-mesenchymal
transition, and plasticity refers to the ability of cells to tran-
sition between these patterns. The stem cell theory therefore
describes both normal mammary tissue and malignancies as
featuring a hierarchical structure, with the noncancerous and
cancerous stem cells both located at the apices of their
respective organizations, but with the normal MaSCs pro-
ducing differentiated progeny that include luminal (ductal and
lobular-alveolar) as well as myoepithelial cells; in contrast, the
BCSCs (alias breast cancer—initiating cells) produce
neoplastic progeny that possess varying degrees of de-
differentiation and tumor-initiating traits. The MaSCs and
BCSCs are the only components that have the abilities to both
self-renew and regenerate the full spectrum of diverse tissues
within the overall mammary gland or mammary cancer,
respectively. A detailed discussion of these complex processes
is beyond the scope of this article, but some of the key ele-
ments are depicted in Figure 1 and have been explored more
comprehensively by others.”*

As described in the previous paragraph, BCSCs represent
the subpopulation of tumor cells that can self-renew and
recapitulate the parent tumor (as demonstrated by xeno-
transplantation studies), whereas the cancer cells lacking the
BCSC properties do not have this capacity. The latter non-
BCSCs tend to comprise the bulk of the detected tumor and
its metastases, whereas the minority-subpopulation BCSCs
account for the metastatic virulence. Conventional (non-
targeted) chemotherapy regimens typically focus on exter-
minating the hyperproliferative and abundant non-BCSC
population. Efforts to identify MaSCs as well as BCSCs, to
correlate breast cancer phenotypes with BCSC activity, and
to develop therapies that disrupt the BCSC metastatic pro-
gression therefore represent exciting prospects in precision-
medicine research.®”’"

Reliable, accurate strategies to identify and isolate
BCSCs have been elusive. Flow cytometry and
fluorescence-activated cell sorting to detect surface-marker
signatures CD447/CD24""~ and epithelial cell adhesion

Figure 1 Breast cancer arises from cells
harboring dysregulated self-renewal capability

@ 5? Cn‘/ﬂm
(.6~ o-0
\O\ \O
%.0

resulting from tumorigenic mutations and/or
epigenetic modifications. Mammary stem cells and
breast cancer stem cells both have the dual abili-
ties to self-renew and differentiate. In the breast
cancer stem cells, the capacity for self-renewal
enables tumor initiation and growth; the capac-
ity for differentiation allows for generating the
bulk tumor cells and tumor cell heterogeneity.
Modified and adapted with permission from Lin
et al®® and Reya et al.”
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molecule/epithelial-specific antigen positivity have been
among the most popular strategies. The Aldefluor assay
(Stem Cell Technologies, Inc., Vancouver, BC, Canada) is
also widely used to detect intracellular aldehyde dehydro-
genase (ALDH) activity. Immunohistochemistry (IHC)
analysis to detect these markers has also been utilized.
These same proteins have been considered as putative
markers of the MaSC in normal breast tissue. Although the
prognostic value of these markers has not been definitively
determined, findings from several studies have shown that
tumors with higher proportions of cancerous stem cells
indicated by any of these markers are associated with a
worse prognosis.”’' "

In malignant breast tissue, studies have indicated minimal
overlap between the CD44"/CD24'Y~ and ALDH pop-
ulations (suggesting that they represent distinct and separate
BCSCs) but tumors that are enriched with both BCSC types
are especially virulent. The CD44 "/CD24'**~ cells have been
associated with an enhanced capacity for detaching from the
primary tumor and metastasizing (supported by a dominant
epithelial-to-mesenchymal transition gene-expression pro-
file), whereas the ALDH BCSCs appear to feature a stronger
predisposition for replicating and thereby possibly yielding
more of the non-BCSC progeny that account for the bulk of the
tumor (supported by their dominant mesenchymal-to-
epithelial transition gene-expression profile).®* %7+

Itis unknown at present whether a direct link exists between
specific BCSCs and individual breast cancer subtypes. The
CD447/CD24'°""~ and the ALDH BCSCs have both been
correlated with high-grade, basal-like, and HER2/Neu-over-
expressing tumors.'***7>~"® Another potentially therapeuti-
cally relevant theory is that HER2/Neu-related oncogenic
activity in BCSCs may be independent of HER2/Neu
expression as identified by standard IHC analysis, thereby
explaining why some patients with HER2/Neu-negative breast
cancers derive an outcome advantage from targeted anti-
HER2/Neu therapy.’”*’

Breast Cancer Stem Cells and African Ancestry

Triple-negative and basal subtype breast cancers are more
common among African-American compared with White-
American women, and breast cancer mortality rates are higher
among African Americans. Preliminary data suggest that
basal breast cancers are enriched with populations of cells that
feature BCSC markers, and this feature may account for the
metastatic potential of aggressive breast cancer subtypes.
Very little is known regarding BCSC patterns in women of
African ancestry, as most stem cell research in humans has
been based on specimens from White-American, European,
and Asian patient populations.

Nakshatri et al'’ evaluated the distribution of MaSC phe-
notypes (defined by cell surface markers assessed with flow
cytometry) in African-American and White-American women
that donated healthy breast tissue specimens to the Susan G.
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Komen Tissue Bank (Indianapolis, IN). These investigators
found significant elevations in CD447/CD24~ and endothe-
lial protein C receptor—positive/epithelial cell adhesion mol-
ecule—negative multipotent stem cells in the tissues from
African-American compared with White-American donors.

The candidate BCSC marker ALDH1 has been evaluated
by a few different data sets of breast tumors in women of
African ancestry, with most of these studies using IHC
analysis methodology. Although there is no standardized cut
point for assigning ALDHI positivity, most studies in
White-American and European breast cancer patients report
less than one-third of cases to have ALDHI over-
expression.' """ Nalwoga et al'* analyzed 192 breast cancers
from the Makerere University College of Health Sciences
(Kampala, Uganda) by IHC analysis applied to tissue
microarrays and found ALDHI expression in 48% of cases;
ALDHI expression was also associated with high-grade and
triple-negative tumors. Schwartz et al'' reported over-
expression of ALDHI in 42% and 17% of the stromal and
epithelial compartments, respectively, from 104 Ghanaian
breast cancer cases. These investigators also found notably
higher expression of ALDH1 in TNBCs as well as in benign
breast tissue from Ghanaian patients. An updated and
expanded but unpublished series from this group found
ALDHI1 expression to be increased among specimens from
African-American and Ghanaian breast cancer patients
(32% and 36%, respectively) compared with White-
American and Ethiopian patients (23% and 17%, respec-
tively; P = 0.007).

The concept of assessing cancer stem cells as a factor in
outcome disparities related to racial/ethnic identity is gain-
ing traction in other, non—breast disease sites. Recent
studies by Farhana et al®' and Goyal et al** have proposed
that increased cancer stem cell activity may explain the in-
crease in colorectal cancer prevalence as well as mortality
among African Americans compared with White Ameri-
cans. Broadening the research opportunities related to
stem cells and diverse patient populations even further,
Chang et al®” recently reported on the generation of xeno-
free human induced pluripotent stem cell lines from
fibroblasts obtained from individuals representing White-
American, African-American, Hispanic/Latino, and Asian
backgrounds.

Conclusions

Achieving the full potential of precision medicine in cancer
by delivering truly personalized care requires that all ele-
ments of the oncology pathway be addressed. This complex
picture includes germline genetic patterns as well as so-
matic/tumor genetics. The stem cell model in mammary
tissue as well as in breast cancers suggests that it is equally
important to identify and characterize the subpopulation
of tumor cells that is involved in metastatic virulence.
Racial/ethnic identity can be correlated with germline
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genetics/hereditary cancer susceptibility and tumor pheno-
type; it is therefore imperative that stem cell biology be
explored in the context of patients of diverse racial and
ethnic backgrounds. These issues are especially important in
breast cancer, in which women of African ancestry are well
known to experience higher mortality from breast cancer,
and this disparity is at least partly explained by a dispro-
portionate risk for triple-negative and basal breast cancer
subtypes.
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