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In breast cancer screening, binary classification of mammograms is a common task

aiming to determine whether a case is malignant or benign. A Computer-Aided Diagnosis

(CADx) system based on a trainable classifier requires clean data and labels coming

from a confirmed diagnosis. Unfortunately, such labels are not easy to obtain in clinical

practice, since the histopathological reports of biopsy may not be available alongside

mammograms, while normal cases may not have an explicit follow-up confirmation. Such

ambiguities result either in reducing the number of samples eligible for training or in a

label uncertainty that may decrease the performances. In this work, we maximize the

number of samples for training relying on multi-task learning. We design a deep-neural-

network-based classifier yielding multiple outputs in one forward pass. The predicted

classes include binary malignancy, cancer probability estimation, breast density, and

image laterality. Since few samples have all classes available and confirmed, we propose

to introduce the uncertainty related to the classes as a per-sample weight during

training. Such weighting prevents updating the network’s parameters when training

on uncertain or missing labels. We evaluate our approach on the public INBreast and

private datasets, showing statistically significant improvements compared to baseline

and independent state-of-the-art approaches. Moreover, we use mammograms from

Susan G. Komen Tissue Bank for fine-tuning, further demonstrating the ability to improve

the performances in our multi-task learning setup from raw clinical data. We achieved

the binary classification performance of AUC = 80.46 on our private dataset and

AUC = 85.23 on the INBreast dataset.

Keywords: breast cancer, mammography, classification, multi-task learning, missing labels, uncertainty

1. INTRODUCTION

Breast cancer is one most prevalent types of cancer worldwide (1)1 and, therefore, an important
healthcare concern. Significant efforts are dedicated to breast cancer screening (2), as early
detection allows to increase the chances of recovery (3). Screening usually begins with a clinical
exam followed by an imaging examination, with mammography as the most common first choice
(4). Generally, the mammography interpretation further guides patient care, which can be a
regular follow-up, or additional examinations if mammography reveals any signs of pathology.

1https://gco.iarc.fr/today/.
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Other imaging examinations, such as Ultrasound (US) or
Magnetic Resonance Imaging (MRI) can also be performed
during the clinical investigation. However, they are often
secondary to mammography, i.e., they are used for diagnostic
purposes when the clinical examination and mammography are
not sufficient. In this work, we focus on early breast cancer
screening and diagnosis. Therefore, our method targets mainly
mammography. Nevertheless, it can be applied to other types of
imaging as well.

Regular mammography screening starts between the age
of 40 and 50, depending on the regional guidelines (4, 5),
and is performed every 2 years. With a growing number of
people having access to public and private healthcare, screening
generates a substantial workload for healthcare practitioners, in
particular for radiologists. Moreover, new imaging modalities,
such as Digital Breast Tomosynthesis (DBT) (6) or Automated
Breast Ultrasound (ABUS) (7) improve precision and allow
for earlier cancer detection at the cost of longer interpretation
time. Hence, the clinical community has shown an interest in
tools able to facilitate routine diagnosis. In response, Computer-
Aided Detection (CADe) and Diagnosis (CADx) methods have
gained popularity, in particular with the recent emergence
of deep-learning-based methods (8–11). Such CAD tools are
intended to assist the radiologist during image interpretation by
providing detection guidance and evaluating the likelihood of
cancer, aiming to reduce interpretation time. Although a general
adoption is yet to come (8, 12), there is a trend toward a larger
acceptance of CAD software as a helper tool in clinical practice
(13, 14). Today, common breast cancer CADx solutions provide a
cancer-probability- or risk-based score of malignancy. Following
the radiology guidelines, such as American College of Radiology
(ACR) guidance (15), that suggests listing and classifying all
identifiable findings according to the probability of cancer (from
0 to > 95%).

Most recent CAD algorithms (9, 16–18), based on supervised
Deep Learning (DL) approaches, rely on a set of samples
for training. The model’s success during test time will largely
depend on this dataset, which should be representative

of the variations, clinically relevant, and preferably include
explicit ground truth annotations. As we discuss next, these
requirements are challenging in the context of mammography
imaging analysis.

First, access to clinical data is restricted due to patient privacy
concerns. Healthcare providers holding imaging databases are
not allowed to share the data, either for free or for a fee,
without patients’ consent. That is, patients shall be informed and
confirm that they agree to their data being used for research
or software development purposes. Hence, a protocol compliant
with regulations needs to be carefully designed before sharing
images with third parties.

Second, clinical data from screening protocols are strongly
imbalanced. With breast cancer prevalence in a range between
1 and 2%1, screening imaging databases are mainly composed of
negative cases while the true positive (biopsy-proven) cases are
generally under-represented.

Third, ground truth for the images is not always easy to
collect. Generally, each clinical case is composed of a set of

images and a descriptive clinical report. Often, reports contain
information about the images (number and type of acquisitions),
physiological details (breast density), and the most important
information about the diagnosis. Depending on radiologists’
practice in each site, the level of details may significantly vary.
Also, while the clinical report of a mammography usually
contains an ACR classification indicating the probability of
cancer, the actual confirmation of the malignancy may not be
available; for instance, the biopsy reports can be stored in a
different database (e.g., paper hard-copies), or be effectively
missing. Besides, there is a certain number of false-negative
mammography exams, estimated to 10 − 15% in (9, 19).
Hence, despite the substantial volume of screening data, image
databases relying on labels from clinical repots can be poorly
and sometimes erroneously annotated, leading to significant
label uncertainties.

The issues above make the design and training of deep
learning CAD solutions difficult. To better exploit raw
clinical databases, in this work, we propose a Multi-Task
Learning (MTL) approach allowing us to maximize the
quantity of data used for training, without the need to
carefully curate sample annotations. To this end, we propose
to simultaneously train a neural network for multiple tasks
relevant to mammography. Our main purpose is to mitigate
the data (epistemic) uncertainty by encouraging the network to
learn common features despite missing or noisy labels, thereby
improving the performances of each particular task. Moreover,
our training strategy allows for a better shaped latent space,
contributing to the explainability of the prediction. Finally, our
design has the potential of capturing uncertainty as in (20) on
several tasks simultaneously, further increasing the safety of
the solution.

Our multitask model focuses on five tasks. First, we set the
binary malignancy prediction as a primary task. Next, we define
four auxiliary tasks: (1) 6-class ACR prediction, (2) 4-class breast
density prediction, (3) 2-class view angle prediction, and (4)
image reconstruction. To the best of our knowledge, we are
the first to propose the combination of these five tasks in a
single model.

1.1. Related Work
Deep learning applied to mammography imaging has been
broadly studied in past years (21–23). Recent works include
deep neural networks for classification (17, 18, 20, 24), detection
(16, 25), and segmentation (26–28).

Several successful methods for breast cancer classification
from mammograms have been recently proposed. Shen et al.
(17) describe a binary-classification method trained on two
datasets, CBIS-DDSM (29) and INBreast (30) reaching AUC =

95.00 on selected validation samples from INBreast. Ribli
et al. (16) approach the classification task with a detection
method. The detector is trained on two datasets: DDSM (31)
and privately collected by the authors. Both datasets includes
manually delineated Regions of Interest (ROI) around lesions.
Using the entire INBreast dataset for validation (16) claim a
similar AUC = 95.00. Other works, such as (18, 32, 33) use
substantially larger private datasets for training and testing, with
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AUC scores of 89.50, 93.00, and 94.50, respectively. Both (18)
and (32) rely only on image-wise labels (i.e., without ROI).
Wu et al. (18) classify mammography cases (composed of four
views) by combining features extracted from each view. Shen
et al. (32) perform image-wise classification and introduce an
additional step that evaluates patches extracted from the image
using saliencymap to get themost relevant patches. Alternatively,
Lotter et al. (33) train a network using explicit pixel-wise ground
truth for detection, before fine-tuning with image-wise labels on
a larger dataset.

There is a trend toward algorithms processing multiple
mammography views of the same patient simultaneously (34–
38). In clinical practice, two views of a breast, called Craniocaudal
(CC) and Medio-lateral Oblique (MLO), are usually acquired
from two different angles. These views seek to compensate
the tissue superimposition when projecting the 3-dimensional
breast onto a 2-dimensional mammogram. Building an algorithm
relying on multiple views has the potential to improve the
performance. However, such algorithms may fail when an
abnormality is seen from one view only (39). Moreover, a case-
wise algorithm requiring the images of both breasts may fail to
operate on cases with mastectomy (i.e., one breast is missing).
Hence, instead of processing several images simultaneously, we
we use the view information to train a network to distinguish the
two views as an auxiliary 2-class objective.

Breast density is a risk indicator for breast cancer (40).
Therefore, developing methods for density classification has
also attracted the interest of the community (41–43). Recently,
Arefan et al. (44) proposed a neural-network-basedmethod using
density to predict the risk of cancer development. However,
the authors relied on 224x224 images, which is insufficient to
detect cancer-related clinical features being sometimes smaller
than 1mm (15). In our case, we propose to learn the density
representation as another auxiliary classification task, using
the 5th edition Breast Imaging-Reporting And Data System
(BI-RADS) density classification grid, and to perform this task
on high-resolution images.

Our method is built on the MTL strategy (45) previously
studies in the context of other medical imaging applications(46,
47). State-of-the-art methods often implement MTL as a
combination of detection and classification tasks (37, 48–50).
Other works refer to the MTL as a means of pre-training on
unrelated on distantly-related tasks (51, 52). In our case, we
propose to train an MTL algorithm from scratch on multiple
classification tasks relevant to mammography, namely breast
cancer, view angle, breast density, and probability of cancer. To
this end, we rely on image-wise labels generally available from
clinical practice (i.e., clinical case reports), without the need for
explicit pixel- or region-wise ground truth.

From the architecture standpoint, we propose to combine
several techniques successfully used on other modalities. Our
architecture is similar to a Y-net (53). However, our network
yields multiple predictions from the bottleneck instead of one
unique output as in the case of (53). Similar to (25), we propose
the fusion of features at multiple levels, preventing from choosing
one particular (e.g., last) feature level. In this way, we leave the

network select the features relevant to a given task automatically
during learning.

Finally, we propose to introduce a measure of uncertainty
in the training process. Contrary to (54), who quantify the
uncertainty of output predictions, we propose to use the
uncertainty estimates within the optimization function similar to
(55). However, we propose to rely on prior knowledge about the
dataset to scale the uncertainty, instead of using the uncertainty
coming from the network as in (55). In a way, our approach
relates to the work of (56), who use inter-rater agreement as an
uncertainty indicator.

2. METHODS AND MATERIALS

2.1. Method
In this work, we focus on the problem of mammography
binary breast cancer classification in the context of data with
heterogeneous annotations. First, we have a limited number of
well-annotated samples with gold-standard-confirmed ground
truth. Second, the available samples also have labels of other
classes, such as density (i.e., BI-RADS), cancer probability (i.e.,
ACR), and view angle. Third, we have access to an extended
dataset with images having labels of other classes only, without
confirmed breast cancer classification. We aim at maximizing the
sources of knowledge using most of the available data for the
training of an image classifier.

We address the problem of poorness and uncertainty of the
ground truth labels with an MTL approach. Let I ∈ R

H×W

be an input mammography and let each image I have at most
T labels (one per classification task) leading to a target vector
y = [y1, ..., yT]. For each task, the label yt is defined as yt ∈

{0,C1,C2, ...,Ct} for a Ct-class classification, where the label yt
can belong to one of the Ct classes, or be missing (i.e., yt = 0).
Moreover, each label yt can be associated to an uncertainty score
ut . This score allows taking into account the low confidence of
a label. There can be several scenarios determining the value
of ut , for example, (i) the expertise of the annotator, e.g., labels
generated by a junior-level radiologist ; (ii) the impreciseness of
labels extracted from the clinical report, e.g., “density between
B and C”; (iii) the low confidence of a reported diagnosis, e.g.,
a malignant case may have a negative mammogram. For all the
above cases, the uncertainty values are bounded to ut ∈ [0, 1],
and there is one uncertainty estimation per task leading to a
vector u = [u1, ..., uT].

We define a trainable classifier f (·, θ) predicting the T classes
for the input image I, where θ are trainable parameters. Having
T classification outputs [ŷ1, ..., ŷT], we define T classification loss
functions Lcls{1,...,T} . To take into account both the missing and
uncertain labels, we introduce a loss-weighting function W(y, u)
combining the individual task losses into the global loss LCL as
follows:

LCL =

T
∑

t=1

wtLclst (yt , ŷt), (1)
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FIGURE 1 | The overview of the proposed method: the image I is fed to the network f (·); the encoder E(·) allows to extract the latent representation z(·) used for

classification tasks {ŷt}; the decoder D(·) is trained to reconstruct the image I from its latent representation z(·) leading to the auxiliary output Î.

where wt is defined as:

wt = W(yt , ut) =

{

0 yt = 0
1− ut otherwise

(2)

Following Equations (1) and (2), for a given image I whose label
yt is available, the loss Lclst is enabled and weighted with the
inverse of the label’s uncertainty score without any additional
normalization. If the label is unavailable (yt = 0), the loss Lclst
is disabled for that sample.

To further maximize the knowledge used by the classifier, we
add a reconstruction task as a means of implicit regularization
(57). Unlike several state-of-the-art works proposing a
segmentation output (53) as an addition to classification,
we prefer the reconstruction task since it requires neither explicit
ground truth nor custom losses as in (28). Hence, the f (·, θ)
function yields an auxiliary output image Î ∈ R

H×W on top of
the classification predictions [ŷ1, ..., ŷT]. The global loss function,
including the reconstruction loss, is defined as follows:

L = Lrec(I, Î)+

T
∑

t=1

wtLclst (yt , ŷt) (3)

The overview of the proposed method is illustrated in Figure 1.
Training the neural network with the loss from Equation
(3) allows updating most of the parameters of the network
from every sample while requiring very few data filtering
beforehand. Indeed, the reconstruction task is systematically
feasible regardless of the available ground truth. Amongst the
classification tasks, the view angle is almost always available, with
rare mislabeling often due to acquisition mishandling. Fewer
density labels are available, but they can be crowdsourced (58)
from junior radiologists. Finally, ACR and cancer annotations are
more challenging to collect and often unavailable. However, as
we demonstrate experimentally in section 3, our method relies
on the auxiliary tasks with easier to collect labels to improve
the classification performance for the more challenging ACR and
benign/malignant classification tasks.

2.2. Architectural Design
For the implementation of our trainable function f (·, θ), we
rely on a hourglass auto-encoder architecture implemented
as a Deep Neural Network (DNN), as in (28). In practice,
f (·, θ) is composed of an encoder E(·, θE), a decoder
D(·, θD). To facilitate our MTL formulation we include in
f (·, θ) T classification functions dt(·) that convert the latent
representation z of an image into the predictions ŷt . Finally,
we rely on a multi-level feature extraction in E(·, θE), as we
explain next.

The encoder E(·, θE) is implemented as ResNet22 (18, 28, 32).
The implemented neural network has 5 levels of residual blocks,
each with the following numbers of filters: 16, 32, 64, 128, and
256 in the convolutional layers. We use two residual blocks at
each level with two convolutional layers each. As in (28), we
used depth-wise separable convolutions (59) instead of regular
ones, significantly reducing the number of parameters to train.
We replaced the ReLU activations with LeakyReLU and used
instance normalization as it better fits the reconstruction task of
the decoder (60).

With an MTL approach comes the question of what features
are relevant to each task (45). For instance, the view angle
classification is relatively simple and may not require deep
features: detecting the pectoral muscle on an image is enough.
Density classification is harder, while malignancy classification is
the most complexcalling for deeper features. To avoid making
a restrictive choice of the features to be used for a given
classification task, we perform feature fusion from the five levels
of the encoder E(·). For the consistency of the extracted features,
at the end of each level of the ResNet22 encoder we add a feature
generator, denoted as gi(·) (see Figure 1), composed of a Global
Average Pooling (GAP) layer, L2-normalization, and a dropout
layer, hence, yielding the features in a normalized scale. The
features from gi(·) are then fused with a concatenation function
c(·) and result in latent representation z. Considering the number
of the filters at each level of the network, the total size of feature
vector z is R496 .

Frontiers in Radiology | www.frontiersin.org 4 January 2022 | Volume 1 | Article 796078

https://www.frontiersin.org/journals/radiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/radiology#articles


Tardy and Mateus Leveraging Multi-Task Learning for Mammograms

The classification functions dt(·) are implemented as regular
dense layers converting the latent representation z to a given
prediction ŷt . In our implementation, we used only one dense
layer to reduce the feature space of R496 to the dimensionality of
the given task (see section 2.3). This choice allows to decrease the
complexity of the network and to prevent eventual overfitting.

The decoder D(·, θD), used only for the reconstruction task, is
implemented as a narrower version of an upside-down ResNet22.
To reduce the number of trainable parameters, only one residual
block is used at each level of the decoder (i.e., two stacked
convolutional layers and a skip connection). To maximize the
information flowing through the bottleneck of our hourglass
architecture, unlike (28), we did not use any skip connections
between the encoder and decoder. We reckon that such a
choice penalizes the quality of the reconstruction. However, we
are mainly interested in a meaningful representation z, while
reconstruction remains an auxiliary task useful for efficient
weights initialization (61) and implicit regularization (57).

2.3. Classification Tasks
In this work, we restrict the scope to four meaningful-to-
mammography classification tasks:

• binary breast cancer classification (breastbin),
• 6-class ACR cancer probability prediction (ACR) (15),
• 4-class BI-RADS density classification (BIRADS) (15), and
• 2-class view angle prediction (view).

The breastbin classification relies on the confirmation of the
malignancy either with a histopathological examination or with a
follow-up exam. Only samples having positive biopsy are classed
as “malignant”. Otherwise, if there is a negative biopsy , or a
negative follow-up, the case is considered “benign.”

The ACR classification includes six classes according to the
ACR grid as follows:

1 no identifiable finding,
2 all findings are benign,
3 below 2% of the probability of malignancy,
4 between 2% and 94% of the probability of malignancy,
5 more than 95% of the probability of malignancy,
6 confirmed malignant cases.

We do not use the label “0” standing for the lack of imaging to
provide the diagnosis.

The BIRADS classification relies on the 5th edition BI-RADS
4-class density assessment guidelines standing as follows:

A fatty,
B scattered fibro-glandular,
C heterogeneously dense; and
D extremely dense (see Figure 2).

Finally, the view classification relies on the view angle coming
from the X-ray camera position. Most commonly, two view
angles are acquired (see Figure 3):

• CC
• MLO

FIGURE 2 | Illustration of the BI-RADS density classes, from left to right:

classes (A–D).

The Medio-lateral (ML) views are rarely acquired, so we restrict
the problem to a binary classification to prevent class imbalance..
Considering acquisition similarities of ML and CC views (i.e.,
both views depict the pectoral muscle less than MLO), we
combine ML and CC samples together.

For the classification loss functionsLclst we use Cross-Entropy
losses. For the reconstruction Lrec we use Mean Squared Error
(MSE) loss function.We did not use any loss weighing other than
wk(yk, uk).

2.4. Implementation Details
The code was implemented using Keras (62) and Tensorflow (63).
For the training, we used Adam optimizer with the learning rate
of 1e− 3, taking into account the sum of five losses used to train
the network. The numbers of epochs in different experiments
(see section 3.3) vary and mainly depend on whether the training
is performed from scratch or fine-tuned. We set the dropout
rate to 0.5. In all experiments, except for fine-tuning (see
section 3.3.5), the neural network is trained from scratch and
the weights initialized with Xavier method (64). No additional
hyperparameter was used to balance the different loss terms, i.e.,
balancing factors are fixed to 1.

3. EXPERIMENTAL VALIDATION

3.1. Datasets
The experimental validation relies on three datasets coming from
different populations, locations (countries), and mammography
systems’ vendors.

First, we use a private multi-vendor dataset composed of 2,520
Full Field Digital Mammography (FFDM) images from four
different vendors, namely Fujifilm, GE, Hologic, and Planmed.
It contains 1,271 benign and 1,249 malignant mammograms.
All the images were annotated with the labels for the four
considered classification tasks: binary cancer classification,
cancer probability, density, and view angle classes. We excluded
cases with implants and clips, as well as post-surgical malignant
cases. In the following, we refer to this dataset as HMI and the
images of this dataset as I ∈ DHMI.

Second, we use the publicly available INBreast dataset (30)
composed of 410 FFDM images from a Siemens mammography
system. Similar to the HMI dataset, the images were annotated
with the labels for the four considered classification tasks. We
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FIGURE 3 | Illustration of the breast view angles: Craniocaudal (CC), Mediolateral oblique (MLO), and Mediolateral (ML).

TABLE 1 | Composition of datasets DHMItrain , DHMItest , DINB, and DVTB, per task and per class as well as the total amount of samples.

breastbin ACR BIRADS view Total

0 1 1 2 3 4 5 6 A B C D CC MLO Images Patients

DHMItrain 1,016 1,000 397 619 11 186 284 508 372 925 602 117 1,210 806 2,016 997

DHMItest 255 249 96 159 2 45 75 123 91 221 159 33 296 208 504 409

DINB 310 100 67 220 23 43 49 8 136 147 99 28 204 206 410 115

DVTB NA NA 3,152 1,994 94 102 0 22 667 2,489 2,082 198 2,791 2,669 5,460 606

count 100 malignant images and 310 benign images (including
ACR3 class). This dataset is denoted as INB and its images as
I ∈ DINB.

Finally, we use data from the Susan G. Komen Tissue Bank
at the IU Simon Cancer Center (65). This dataset is composed
of ≈16K donated mammograms coming mainly from healthy
(i.e., negative biopsy patients). The images do not systematically
have labels of all four tasks, often missing cancer classification
and sometimes missing the probability of cancer or the density
class. However, most of the cases are labeled with density
and/or cancer probability. The images comemainly fromHologic
mammography systems, ≈10% from Fujifilm and GE systems,
and the remaining from other lower represented systems (under
5%). We did not apply any filtering of the samples. We refer
to this dataset as VTB and the images of this dataset as I ∈

DVTB.
The distribution of samples over classes and tasks is given is

given in Table 1.

3.2. Image Preprocessing and
Augmentation
Before feeding images into the neural network, we preprocess
them in the following way. First, the images of the right breasts
are horizontally flipped to align the object to the left of the
canvas. Then, the background and the embedded labels are
removed from the imageby (i) determining the intensity value
of the background, (ii) identifying the biggest isolated object

on the image with binary thresholding, and (iii) setting to zero
the pixels of smaller objects (i.e., embedded labels) and the
background. Then the image is cropped to the bounding box
around the breast. The cropped image is resized to 2, 048 pixels
height. The width is padded with black pixels to allow the image
to be reconstructed after being passed through the bottleneck
of the hourglass architecture. Since our bottleneck is of size
H
64 × W

64 × 256, we pad the width to ensure the remainder of
W
64 is zero. The fully convolutional nature of the network (i.e.,
ResNet) allows to process input images of flexible dimensions.
Finally, the intensity values are rescaled to the range of [0, 1]. We
illustrate the pre-processing pipeline in Figure 4. All operations
are deterministic and integrated into the pipeline in an end-to-
end manner.

We apply several augmentation techniques at train time,
including (i) random horizontal and vertical translation, (ii)
random zoom, and (iii) random vertical flipping. Each image
can be modified with none, one, or several augmentations with
a probability of 0.5 for each technique. Our main training
dataset (i.e., DHMItrain ) contains limited number of samples
(see Table 1). Hence, to prevent the overfitting we observed
during our first experiments, we applied data augmentation
techniques. We rely on the state-of-the art augmentation
techniques described in (16, 17). However, we avoid shearing
to prevent artificial deformations, and we did not use
horizontal flipping to keep the overall shape consistency as
in (18).
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FIGURE 4 | Illustration of the preprocessing pipeline: reading, flipping, cleaning, cropping, resizing, and intensity rescaling.

FIGURE 5 | Illustration of classified samples with their annotations in format “ACR/BIRADS/view.” Malignant findings, if any, are indicated with rectangular bounding

boxes.

3.3. Experimental Setup
To explore and evaluate our multitask method we perform
several experiments and ablation studies that show the interest
of each task in improving the joint latent representation
and consequently, the overall classification performance. We
use the HMI dataset for training and testing, split with a
80/20 ratio. We separated the images breast-wise, i.e., images
of the same breast belong to the same subset. We note
that several the patients had only one view available for a
malignant breast. We refer to the train images as DHMItrain

and to the test images as DHMItest . Similar to (16), we use
the INB dataset for validation only; that is, we do not train
the networks on the INB dataset. Finally, we use the VTB

dataset for the fine-tuning of our network. These datasets
were fully or partially annotated for the 4 classification tasks
(breastbin, ACR, BIRADS, view), as mentioned in section 2.3.
An illustration of samples and their multitask classes is given in
Figure 5.

We evaluate the performance of the breast classification
and the view angle with the tasks with Area Under the
Receiver Operator Curve (AUC). The ACR and BI-RADS
classification tasks are evaluated with weighted accuracy metrics
to compensate for the class imbalance.

Unless stated otherwise, the training is performed for 100
epochs from scratch. We calculate the average and the standard
deviation of the metrics over the 10 top-performing epochs on
the DHMItest dataset.

3.3.1. State-of-the-Art Comparison
To compare our method to the state-of-the-art, we evaluate the
performance of several approaches on the DHMItest and DINB

datasets following the same experimental setup. First, we set as
baseline network a ResNet22, denoted as “Baseline,” similar to the
encoder E(·) but without multi-level feature fusion and trained
for a single binary classification task. We train this baseline
model from scratch on DHMItrain . We also compare the ResNet22
implementation from (18), denoted as “Wu et al..” Unlike ours,
this implementation uses regular convolutions and contains
additional dense layers after the GAP. We used the pre-trained
image-wise model, made publicly available by the authors2 after
training on ≈1M images. Then, we compare to an ensemble
approach, denoted as “Ensembles.” The ensemble combines the
top-performing models of the baseline ResNet22 architecture
from 5 runs of training from scratch with 5 different random
seeds. Finally, we compare to the Monte-Carlo (MC) dropout
method (66), denoted as “MC-Drop,” running 10 forward passes
of the baseline network with a dropout of 0.5 at test time and
computing the average over the predictions.

We report the results on the two test datasets (DHMItest and
DINB). We also report results for the auxiliary tasks (density and
view-angle), each computed over the relevant portions of the
test datasets.

2https://github.com/nyukat/breast_cancer_classifier/.
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3.3.2. Auxiliary Task Contribution
To evaluate the contribution of each of the tasks (see section 2.2),
we explored several task combinations: breastbin, breastbin + rec,
breastbin + ACR, breastbin + BIRADS, and breastbin + view. We
compared the prediction performance of the model with each
combination vs. the full multi-task training considering all five
tasks.

3.3.3. Training on Few Data and Noisy Labels
To further evaluate the contribution of the studied tasks, we
reduced the number of labels for breastbin. The goal of this
experiment is to show that MTL improves the performance when
fewer annotations are available or in presence of noisy labels. To
this end we trained the MTL model, while randomly excluding
25, 50, and 75% of breastbin labels (denoted as “MTLbreast−25%,”
“MTLbreast−50%,” and “MTLbreast−75%,” respectively) but keeping
other available labels. We also trained the MTL model excluding
25, 50, and 75% of all labels (denoted as “MTLall−25%,”
“MTLall−50%,” and “MTLall−75%,” respectively). For the state-the-
art comparison, we train two mono-task methods using the
baseline ResNet22 architecture.

The first method is the MixMatch pseudo-labeling technique
(67, 68), which uses predictions of the pre-trained model as
ground truth labels for further training (denoted as “MixMatch”).
This method is designed to cope with the lack of labels. While
the motivation is similar, their method follows a pseudollabeling
instead of anMTL approach.We train the model on 50% of labels
before generating the pseudo-label target values.

The second method is noisy labeling. Inspired by (69), we
randomly exclude 50% of labels and then add noise to 50%
and 100% of excluded labels (denoted as “NL50%” and “NL100%,”
respectively). it allows simulating the noisiness of the labels
coming from clinical practice (e.g., missing biopsy confirmation,
false-negative diagnosis), hence evaluating the training under
label noise scenario.

In these experiments, we trained the networks onDHMItrain and
tested on DHMItest and DINB

3.3.4. Task-Specific Performances
We also explored the performance of the model individually
trained for each task. Here we used the E(·) with multi-level
feature fusion.We evaluated all four classification tasks: breastbin,
ACR, BIRADS, and view. As before, we kept training onDHMItrain

and testing on DHMItest and DINB.

3.3.5. Fine-Tuning With Uncertainty Scoring
Finally, we explored the proposed uncertainty-based loss
weighting in the fine-tuning scenario. As an initial model,
we used the top-performing model pre-trained on DHMItrain .
For fine-tuning, we relied on the DVTB dataset, which has
heterogeneous labels, as described in section 2.3. In this
dataset, most of the highly-graded ACR cases do not have
a histopathology follow-up . Hence, there is an underlying
uncertainty in the breast classification outcome, preventing the
straightforward training of the binary classification task. To cope
with the uncertainty, we, first, created synthetic breastbin labels
using the available ACR labels as follows: for the scores ACR ∈

{1, 2} we set breastbin = 0, for ACR ∈ {4, 5} we set breastbin = 1,
ACR = 3 are ignored. Then, we defined the uncertainty scores
ut as described in section 2.1 for each sample. For simplicity of
the experiments, we set the same uncertainty score u1const for all
of the synthetic labels. We ran fine-tuning with several values of
u1const ∈ {0.0, 0.25, 0.5, 0.75, 0.9} on DVTB dataset and evaluated
on DHMItest and DINB (denoted FTu· ). For the labels of other
tasks we set the uncertainty scores u2..4const = 0.5. We collected
metrics for all the classifications tasks. In this experiment we
also applied class reweighing in the loss function, to compensate
for the significant under-representation of ACR4+ samples (see
Table 1). We set the weight to 20 for all samples having ACR ∈

{4, 5}, and to 1 for all the other classes. We run 20 epochs of
fine-tuning.

4. RESULTS

With the experiments described in the previous section, we
evaluate our proposed MTL method and report hereafter
the results.

When comparing to the state-of-the-art methods (see
Tables 2, 3) we achieve higher binary breast-cancer classification
scores on both datasets, i.e., AUC = 80.46 and AUC = 78.13
on DHMItest and DINB, respectively, compared to the state-of-the-
art methods. Noteworthy, our method yields more consistent
classification performances in the stratified groups: there is
less variation between binary classification scores when the
evaluating performance on a subset of samples for for a given type
of breast. Interestingly, our method outperforms (18) on both
datasets (AUC = 80.46 vs. AUC = 71.26 and AUC = 78.13
vs. AUC = 74.04), while being trained on a smaller dataset. We
note that we used the “image-only” method proposed by (18),
which claims lower performances compared to other methods
proposed by the authors. We hypothesize that our dataset might
contain wider variety of mammography system vendors, favoring
generalization.

We rely on the AUC metric to summarize the trade-off
between the true-positive and the false-positive rates for different
probability thresholds. The AUC is the most frequently reported
score in the state-of-the-art (16–18, 32). Other metrics, such as
sensitivity and specificity, require choosing an operating point.
As an illustration, for the DINB dataset, we obtain a sensitivity
of 80.00% and a specificity of 49.03% when fixing the operating
point at a malignancy probability of p > 0.5. In comparison, the
method of (18) reaches a sensitivity of 2.00% and a specificity
of 100.00% for the same operating point; while moving the
operating point to p > 0.02 leads to scores of 75.00 and
53.87, respectively. We observe a similar behavior on theDHMItest

dataset. Using the same operating point (p > 0.5), our method
obtains scores of 79.92 and 68.63, comparable to those for DINB.
However, for the method from (18), the operating point of p >

0.02 leads to scores of 65.84 and 62.45. We also explored the
Matthews correlation coefficient (MCC) for its better fitness to
the unbalanced-dataset scenario, such as DINB (70). In our case,
we obtained the highest MCC = 0.53, at Sensitivity of 51.00 and
Specificity of 94.52. The baseline method yields MCC = 0.43 at
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TABLE 2 | Evaluation on the test set.

Baseline Wu et al. (18) Ensembles MC-drop Ours (MTL)

Overall 70.69 ± 0.36 (<0.01) 71.26 (<0.01) 73.39 ± 0.98 (<0.01) 72.82 ± 0.29 (<0.01) 80.46 ± 0.29

Density

A 78.42 ± 0.12 (0.03) 81.34 (0.13) 79.14 ± 0.91 (0.05) 80.83 ± 0.10 (0.12) 87.26 ± 0.14

B 68.14 ± 0.19 (<0.01) 70.32 (<0.01) 72.14 ± 1.05 (<0.01) 70.97 ± 0.17 (<0.01) 79.58 ± 0.13

C 67.15 ± 0.16 (0.19) 68.46 (0.21) 68.23 ± 0.90 (0.23) 66.42 ± 0.16 (0.10) 74.23 ± 0.10

D 64.81 ± 0.09 (0.07) 74.81 (0.36) 67.12 ± 0.87 (0.11) 73.33 ± 0.19 (0.23) 83.44 ± 0.07

View angle

CC 63.72 ± 0.14 (<0.01) 69.76 (<0.01) 67.54 ± 1.01 (<0.01) 66.27 ± 0.29 (<0.01) 78.47 ± 0.13

MLO 78.16 ± 0.21 (0.14) 69.82 (<0.01) 79.29 ± 1.12 (<0.30) 79.72 ± 0.29 (0.31) 82.44 ± 0.03

Binary cancer classification performance [“AUC score (p-value to ours)”] of the compared methods on the entire DHMItest dataset and for the subsets filtered per density class and per

view angle.

TABLE 3 | Generalization to an unseen dataset.

Baseline Wu et al. (18) Ensembles MC-drop Ours (MTL)

Overall 72.45 ± 0.26 (0.02) 74.04 (<0.01) 73.34 ± 0.26 (0.02) 67.28 ± 0.26 (<0.01) 78.13 ± 0.63

Density

A 74.30 ± 0.26 (0.28) 64.27 (<0.01) 72.15 ± 0.78 (0.03) 71.01 ± 0.22 (0.02) 78.91 ± 0.23

B 79.91 ± 0.35 (0.09) 80.23 (0.11) 77.43 ± 0.89 (0.07) 73.34 ± 0.13 (<0.01) 85.57 ± 0.32

C 55.05 ± 1.21 (0.11) 78.83 (<0.01) 56.64 ± 0.62 (0.13) 52.00 ± 0.11 (0.01) 65.61 ± 0.22

D 67.70 ± 1.09 (0.82) 62.50 (0.47) 64.39 ± 1.23 (0.62) 62.38 ± 0.17 (0.46) 70.83 ± 0.32

View angle

CC 74.61 ± 0.73 (0.02) 72.43 (<0.01) 68.12 ± 1.46 (0.01) 63.79 ± 0.26 (<0.01) 83.06 ± 0.43

MLO 72.69 ± 0.47 (0.76) 79.83 (<0.01) 70.98 ± 1.83 (0.07) 70.20 ± 0.26 (0.05) 73.62 ± 0.37

Binary cancer classification performance [“AUC score (p-value to ours)”] of the compared methods on the entire DINB dataset and for the subsets filtered per density class and per view

angle.

TABLE 4 | Evaluation of each auxiliary task contribution to the binary cancer classification on the DHMItest and DINB datasets; “+” stands for enabled task and “−” stands

for disabled task.

Task Dataset

breastbin rec ACR BIRADS view DHMItest DINB

+ + + + + 80.46 ± 0.79 78.13 ± 0.83

+ − − − − 70.69 ± 0.36 72.45 ± 0.26

+ + − − − 78.09 ± 1.06 76.47 ± 0.31

+ − + − − 77.60 ± 0.26 77.03 ± 0.78

+ − − + − 74.45 ± 0.81 73.97 ± 0.54

+ − − − + 76.38 ± 0.92 76.67 ± 1.07

The AUC score is reported.

Sensitivity of 53.00 and Specificity of 88.06. The classifier of (18)
gives highest MCC = 0.41 at Sensitivity of 44.00 and Specificity
of 91.61.

We were also interested in the triage scenario, where the
classifier could safely predict the benign and normal cases with
a low false negatives rate. Hence, we compared the operating
point at 95% of sensitivity. For the proposedmethod, we obtained
MCC = 0.24 and a Specificity of 29.03. For the baseline we
obtained MCC = 0.03 and Specificity of 6.45, and for (18)
we obtained MCC = 0.18 and Specificity of 21.55. While

the performances are yet to achieve reliable medical diagnosis
performances, we observe a positive trend with our proposed
method, showing the potential of safely classifying almost 30%
of samples as benign.

When evaluating the contribution of the auxiliary tasks

(see Table 4), the largest improvement is brought by the
reconstruction (“rec”) task (AUC = 78.09 ± 1.06 with a
7.4% gain), followed by the ACR classification tasks (AUC =

77.60 ± 0.26 with a 6.91% gain). Nevertheless, the view and
BIRADS classes also contribute, allowing to achieve scores
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TABLE 5 | Evaluation of the capabilities of auxiliary tasks to improve the binary

breast classification performed on the DHMItest and DINB datasets, while training

with fewer cases annotated with biradsbin labels.

Dataset

DHMItest DINB

Reference 80.46 ± 0.79 78.13 ± 0.83

MTLbreast−25% 78.53 ± 0.22 76.01 ± 1.02

MTLbreast−50% 78.57 ± 0.19 74.07 ± 1.11

MTLbreast−75% 76.20 ± 0.39 71.89 ± 0.87

MTLall−25% 77.85 ± 0.50 77.01 ± 0.98

MTLall−50% 76.37 ± 0.49 72.32 ± 0.78

MTLall−75% 74.18 ± 0.37 69.97 ± 0.92

MixMatch 74.85 ± 0.44 75.10 ± 0.86

NL50% 73.82 ± 0.56 72.88 ± 0.77

NL100% 72.12 ± 0.67 74.55 ± 1.21

AUC score is reported.

TABLE 6 | Comparison of the multi-task training to the mono-task on the DHMItest

dataset; “-” stands for unavailable metrics.

Task

breastbin ACR BIRADS View

AUC Accuracy Accuracy AUC

MTL 80.46 ± 0.79 55.95 ± 1.12 67.66 ± 1.06 96.55 ± 0.70

breastbin 70.69 ± 0.36 - - -

ACR - 54.67 ± 1.13 - -

BIRADS - - 65.92 ± 0.96 -

view - - - 97.14 ± 0.46

TABLE 7 | Comparison of the multi-task to the mono-task on the DINB dataset; “-”

stands for unavailable metrics.

Task

breastbin ACR BIRADS View

AUC Accuracy Accuracy AUC

MTL 78.13 ± 0.83 58.29 ± 1.41 31.70 ± 2.32 84.12 ± 1.32

breastbin 72.45 ± 0.26 - - -

ACR - 15.60 ± 2.10 - -

BIRADS - - 48.75 ± 1.23 -

view - - - 97.28 ± 0.98

of AUC = 74.45 ± 0.81 and AUC = 76.38 ± 0.92,
respectively.

We evaluated the results of the MTL when reducing the

number of samples vs. excluding only the breastbin labels.
We note that keeping the auxiliary labels allows maintaining
higher performances (see Table 5). Remarkably, the performance
of the baseline model (see Tables 2, 3), trained on the full
DHMItrain dataset with complete labels is lower than ourMTL with
only 50% of samples retained. In the same set of experiments,
we also compare to two state-of-the-art methods (see section

TABLE 8 | Effect of uncertainty-based training with breastbin labels generated

from ACR-classification labels on DVTB dataset.

Task

breastbin ACR BIRADS View

AUC Accuracy Accuracy AUC

Reference (MTL) 80.46 ± 0.79 55.95 ± 1.12 67.66 ± 1.06 96.55 ± 0.70

FTu0.00 72.67 ± 0.85 51.78 ± 1.43 63.11 ± 1.01 95.01 ± 1.20

FTu0.25 73.15 ± 0.64 52.13 ± 1.52 62.29 ± 1.11 96.01 ± 0.99

FTu0.50 74.23 ± 0.91 53.97 ± 0.88 65.09 ± 1.02 95.96 ± 0.98

FTu0.75 79.32 ± 0.73 53.23 ± 1.18 65.97 ± 0.87 96.07 ± 1.09

FTu0.90 80.62 ± 0.59 56.01 ± 1.09 66.49 ± 0.98 96.13 ± 1.10

The evaluation is performed on the DHMItest dataset.

TABLE 9 | Effect of uncertainty-based training with breastbin labels generated

from ACR-classification labels on DVTB dataset.

Task

breastbin ACR BIRADS View

AUC Accuracy Accuracy AUC

Reference (MTL) 78.13 ± 0.83 58.29 ± 1.41 31.70 ± 2.32 84.12 ± 1.32

FTu0.00 72.24 ± 0.83 55.12 ± 1.92 31.54 ± 1.11 85.32 ± 1.05

FTu0.25 74.42 ± 0.92 57.03 ± 1.21 30.10 ± 2.04 89.33 ± 1.44

FTu0.50 76.85 ± 0.71 60.08 ± 2.04 36.54 ± 1.67 92.01 ± 1.23

FTu0.75 78.42 ± 0.90 61.97 ± 1.42 37.94 ± 1.03 92.16 ± 0.87

FTu0.90 81.40 ± 0.45 62.68 ± 1.01 38.54 ± 1.24 91.98 ± 0.97

The evaluation is performed on the DINB dataset.

3.3.3) dealing with few annotated samples, noisy labels, or
under uncertain labels (see Table 5). Our method achieved
higher AUC scores, although statistical significance was not
systematically verified.

We separately evaluated the role of the multi-level feature

fusion component. When training on the unique binary
classification task with feature fusion we obtain an AUC =

75.07 ± 0.56 on DHMItest , which is superior than the AUC =

70.69 ± 0.36 obtained without the fusion. The best performance
is however attained when combining the feature fusion with the
MTL training (i.e., AUC = 80.46± 0.29).

We compared the performance of our MTL approach to
the mono-task-trained networks, considering each of the 4
classification tasks (see Tables 6, 7). We observe that MTL
improves the performance for binary breast cancer and ACR
classification tasks. For the unseen distribution (i.e., DINB), the
scores sometimes decrease as in case of density and view-angle
classification. That is, we obtain an accuracy of 31.70 vs. 48.75
for the density classification and AUC = 84.12 vs. AUC =

97.28 for the view-angle classification. In this work, we report
weighted accuracy for ACR and density multi-class classification.
We additionally explored other metrics, such as the F1-score for
these tasks observing similar trends. For the DHMItest dataset, we
obtain F1 = 65.95 ± 1.05 for MTL and F1 = 64.35 ± 0.46 for
the mono-task training in density classification task. Similarly,
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FIGURE 6 | Illustration T-SNE representation of the samples from DHMItest and DINB datasets with Multi-Task Learning (right) and without (left). First row: separation of

benign and malignant classes. Second row: separation of CC and MLO views. Third row: separation of density classes.

for the DINB dataset, we obtain F1 = 32.11 ± 1.87 and F1 =

48.92± 1.07 for the MTL and mono-tasks trainings, respectively.
Our fine-tuning experiments show the potential of our

proposed approach to learn from datasets with scarce or noisy
labels. The performance increase is particularly relevant for
the experiment with the unseen dataset (DINB), where an
improvement w.r.t the initial model is visible for all metrics (see
Tables 8, 9).

5. DISCUSSION

In this work, we proposed an MTL strategy to cope with the
missing and uncertain labels of mammograms while addressing
the binary breast classification.We departed from the difficulty of
patient tracking preventing the collection of confident labels for a
fully-supervised learning (e.g., missing follow-ups, lacking biopsy
information). To address this issue, we proposed several auxiliary
tasks that increase the amount of data eligible for training deep-
learning-based algorithms at a lower cost of data mining and
annotation. Our approach enables the use of labels available from
clinical reports and patient cases, such as the BI-RADS breast
density classes, the ACR cancer probability, and the view angle.

We also proposed to deal with labels uncertainty through loss
weighting at training time.

The design of our deep neural network architecture contains
three main components: (i) a feature fusion block combining
features from multiple levels of a ResNet-like encoder; (ii) a
light-weight decoder for image reconstruction playing the role
of implicit regularizer; and (iii) 4 classification outputs from the
bottleneck of the auto-encoder. All three components contribute
concurrently to the improvement of the performances.Moreover,
our uncertainty-weighted training strategy has also shown
the potential to improve the classification performance while
training on heterogeneous data. In this case, the improvement
is conditioned to a high uncertainty label (i.e., 0.90). We attribute
this phenomenon in part to the significant data imbalance (see
Table 1) and in part to the eventual presence of noisy labels (false
positives and false negatives) in the dataset.

Our results (see section 4) demonstrate the statistically
significant superiority of our method compared to the baseline
and state-of-the-art methods, such as MC-Dropout, Ensembles,
as well a top-performing classification method (18).

Besides the performance improvement in several cases, our
method allows for a processing time gain compared to the
mono-task methods. That is, our network has the advantage of
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performing several clinically relevant tasks (for example, binary
cancer and density classifications) in one forward pass, while in
the case of mono-task networks, one pass per task is needed.
The proposed architecture could be further extended to a MC-
Dropout- or ensemble-type setup. Since it will lead to a longer
processing or/and larger models, we did not explore this scenario
in the present study. However, it can be part of future work.

We note that our MTL method does not reach the state-of-
the-art performances claimed by (16) and (17), i.e., AUC = 95.0
on the INBreast dataset. However, both of these methods rely
on additional labels provided by experts in the form of ROI
around malignant/suspicious regions. These ROI are used for
region detection in case of (16), and for patches extraction in
case of (17). Moreover, the metrics claimed by (17) are collected
only on a portion of the dataset, unlike our metrics computed
on the entire dataset. Furthermore, as our method is designed
to produce an image-wise prediction, we compute image-wise
metrics. If we instead follow the evaluation protocol in (16),
computing breast-wise predictions (i.e., considering the highest
malignancy probability for two views of a breast), we obtain an
AUC = 85.23.

The MTL approach also contributes to the explainability of
the method. Indeed, the simultaneous training allows for better-
shaped latent representation at the auto-encoder bottleneck
(see Figure 6). We, therefore, expect that samples fall closer
to anatomically- and physiologically-related images, even if
misclassified or uncertain. We also observe better performances
with themulti-taskmodel when evaluating specific types of breast
densities or view angles, while the network is trained on the entire
dataset (see Tables 2, 3).

Our approach is relatively straightforward, allowing for the
introduction of other tasks, e.g., classification upon the presence
of different findings, such as masses, calcifications, etc. This offers
a potential of performance improvement at little cost.

Thanks to the MTL approach, our method can ease learning
in environments where all the labels are not easily available, for
example (if the regulation permits) in a federated learning setup
(71, 72). In this context, the network could be trained from
a continuous flow of imaging even eventually without dealing
with clinical reports: e.g., labels, such as view angle, can be
retrieved from imaging meta-data, while density annotations can
be generated with pseudo-labeling.

6. CONCLUSION

This work is a contribution to the field of breast cancer
classification research. The proposed method aims to provide
a reliable prediction of breast cancer using mammography
images as input. To improve the quality of the prediction, we
propose to rely on multi-task learning, introducing several tasks,
including in particular density and view angle classification.
We observe the superiority of our method compared to other
state-of-the-art approaches when evaluating on two independent
datasets. Moreover, we note a more meaningful representation
of the images in the latent space supporting the explainability of
the method.

Despite the performance gain, our method still offers room for
improvement. First, there is still a gap w.r.t. to state-of-the-art

methods using finer levels of annotations [AUC = 95.00 in
(17) and (16)], i.e., relying on labels at the pixel or region level
instead of only image-wise in our case. Second, the marginal
improvement of the uncertainty-based loss-weighting is probably
due to our naive determination of the uncertainty weights;
measuring or better modeling the uncertainties could lead to
a larger performance impact. Moreover, our metrics show that
there is still a gap to fill toward a clinically acceptable medical
diagnostic solution. That is, we are facing a choice of high
specificity or high sensitivity, having to sacrifice the sensitivity
or specificity, respectively. We note, however, that in the high-
sensitivity setup, our method allows for cases triage with a low
false-negative rate: we achieve 30% specificity at 95% sensitivity
on DINB, and similarly, 37% specificity with 95% sensitivity on
DHMItest . The improvements of classification performances may
be achieved, for example, in ensemblesmodels setup, which could
be part of future explorations.

Future work could also include a stronger uncertainty
modeling, in particular relying on the prediction uncertainty
as in (55), instead of the prior knowledge on the dataset.
Another possible direction is the extension of the auxiliary
tasks performed by the network by introducing, for example,
a segmentation task in a self-supervised scenario as in (28).
Moreover, in this work simplified the loss balancing by
multiplying each task loss with the factor of 1. Other balancing
weights, based on experiments or learned dynamically, could
be studied in the future. Finally, the explainability could be
improved with a more explicit shaping of the latent space
enforced through modeling constraints.

Overall, our work presents a step forward in the direction of
more reliable cancer classification and opens several paths for
future research.
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