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Abstract 

Background Microbial dysbiosis has emerged as an important element in the development and progression 
of various cancers, including breast cancer. However, the microbial composition of the breast from healthy indi-
viduals, even relative to risk of developing breast cancer, remains unclear. Here, we performed a comprehensive 
analysis of the microbiota of the normal breast tissue, which was analyzed in relation to the microbial composition 
of the tumor and adjacent normal tissue.

Methods The study cohorts included 403 cancer-free women (who donated normal breast tissue cores) and 76 
breast cancer patients (who donated tumor and/or adjacent normal tissue samples). Microbiome profiling 
was obtained by sequencing the nine hypervariable regions of the 16S rRNA gene (V1V2, V2V3, V3V4, V4V5, V5V7, 
and V7V9). Transcriptome analysis was also performed on 190 normal breast tissue samples. Breast cancer risk score 
was assessed using the Tyrer-Cuzick risk model.

Results The V1V2 amplicon sequencing resulted more suitable for the analysis of the normal breast microbiome 
and identified Lactobacillaceae (Firmicutes phylum), Acetobacterraceae, and Xanthomonadaceae (both Proteobacteria 
phylum) as the most abundant families in the normal breast. However, Ralstonia (Proteobacteria phylum) was more 
abundant in both breast tumors and histologically normal tissues adjacent to malignant tumors. We also conducted 
a correlation analysis between the microbiome and known breast cancer risk factors. Abundances of the bacterial 
taxa Acetotobacter aceti, Lactobacillus vini, Lactobacillus paracasei, and Xanthonomas sp. were associated with age 
(p < 0.0001), racial background (p < 0.0001), and parity (p < 0.0001). Finally, transcriptome analysis of normal breast 
tissues showed an enrichment in metabolism- and immune-related genes in the tissues with abundant Acetotobacter 
aceti, Lactobacillus vini, Lactobacillus paracasei, and Xanthonomas sp., whereas the presence of Ralstonia in the normal 
tissue was linked to dysregulation of genes involved in the carbohydrate metabolic pathway.

Conclusions This study defines the microbial features of normal breast tissue, thus providing a basis to understand 
cancer-related dysbiosis. Moreover, the findings reveal that lifestyle factors can significantly affect the normal breast 
microbial composition.
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Background
Risk factors associated with the development of breast 
cancer (BC) can be classified as either non-modifiable 
(gender, age, genetic susceptibility) or modifiable (par-
ity, breastfeeding, obesity) [1, 2]. Such factors have 
been recently associated with variations in gut micro-
biome. A reduction in Bacteroides and increase in 
Staphylococcus, Enterobacteriaceae and Escherichia 
coli correlated with high body mass index (BMI) [3]. 
Furthermore, an independent study reported a strong 
association between Streptococcaceae in the gut and 
obesity in approximately 600 American adults [4]. Oral 
and gut microbial differences by racial/ethnic back-
ground were also identified, with African Americans 
showing a higher abundance of  Bacteroidetes  and a 
lower abundance of  Actinobacteria  and  Firmicutes as 
compared with European-Americans [5, 6]. Microor-
ganisms interact with host metabolism and regulate the 
local microenvironment, thus impacting tissue homeo-
stasis. Several mechanisms linking the microbiome 
with changes in the tissue microenvironment have been 
proposed: (1) regulation of innate and adaptive immune 
responses [7–9]; (2) induction of genomic instabil-
ity and DNA damage [10]; (3) metabolic activity gen-
erating metabolites (estrogens, short chain fatty acids, 
amino acid, or secondary bile acids) that may promote 
tumorigenesis or inhibit the growth of pathogenic bac-
teria [11–13]. Therefore, bacterial communities within 
a host can be considered an additional environmen-
tal factor that may contribute to or be influenced by 
carcinogenesis.

The breast microbiota, distinct from other body sites, 
is dominated by the phyla Proteobacteria and Firmi-
cutes, likely because of the fatty acid-rich environment 
in the breast [14]. Recent reports showed differences in 
the composition and abundance of some specific bac-
terial taxa between BC patients and healthy individu-
als experiencing breast augmentation surgeries [10]. 
Urbaniak et al. reported a higher relative abundance of 
Bacillus, Enterobacteriaceae and Staphylococcus and 
a reduction in other bacteria, including Lactobacillus, 
in BC when compared with the histologically normal 
tissue adjacent to the tumor (NAT) [14, 15]. Another 
study defined unique microbiota alterations between 
breast tumor and NAT tissues, with the enrichment of 
Methylobacterium radiotolerans in tumor tissue and 
Sphingomonas yanoikuyae in NAT [16]. Furthermore, 
genomic sequencing led to the discovery of Prevotella 
in patients with triple-negative BC (TNBC) [17].

Although the breast tumor microbiota has been inves-
tigated [8, 10, 15, 18], the bacterial composition of the 
healthy breast, lacking any disease-associated histologi-
cal abnormality, remains an underexplored research area. 
Recently, Hoskinson et  al. identified a unique microbial 
signature associated with BC development (40). This 
group identified compositional and functional shifts in 
the microbiome of truly healthy breast tissue relative to 
normal breast tissue isolated prior to breast cancer diag-
nosis as well as NAT and tumor tissue (40). Together 
with transcriptomic and DNA methylation studies [19–
22], these reports suggest that a field effect of the tumor 
on the NAT may occur and the interaction between NAT 
and tumor may promote the formation of the tumor’s 
microenvironment. Thus, because of the important role 
of NAT in cancer progression, its use as a reference sam-
ple in molecular and microbial studies may limit our abil-
ity to identify cancer-related alterations [21–23].

This study aimed to define the microbiota of the dis-
ease-free breast tissue and identify the optimal 16S rRNA 
gene variable region to facilitate this analysis. Special 
attention was paid to the analysis of the dysbiosis occur-
ring in association with risk factors for BC (i.e., racial 
background, age, BMI, menopausal status, parity, genetic 
predisposition) to determine whether these factors may 
influence breast microbial composition. Furthermore, the 
relationship between dysbiosis and host transcriptome 
alterations was investigated to elucidate the potential 
direct and indirect effects of breast cancer-related micro-
biota changes.

Methods
Study participants and samples
The study cohort consisted of 403 cancer-free women 
and 76 breast cancer (BC) patients (Table  1, Additional 
file 1: Table S1 and S2). The cancer-free cohort, or healthy 
control (HC), comprised healthy women with median age 
of 50 years, including 180 premenopausal, 195 postmen-
opausal, and 28 who underwent uterine ablation (Addi-
tional file 1: Table S1). The BC cohort included patients 
who donated either only tumor biopsies (N = 11), only 
normal tissue adjacent to the tumor mass (NAT, N = 41), 
tumor and NAT (N = 20), only distant metastases from 
BC (Met, N = 4), Met and Tumor (N = 1), and Met and 
NAT (= 4) (Additional file 1: Table S2). Fresh frozen nor-
mal breast tissue cores were obtained from the Susan G. 
Komen Tissue Bank (KTB) at IU Simon Comprehensive 
Cancer Center (IUSCCC, Institutional Review Board 
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(IRB) protocol #1011003097). Fresh frozen tissue cores 
from BC patients were obtained from the IUSCCC Tis-
sue Procurement and Distribution Core (IRB protocol 

#11438). Breast specimens were donated voluntarily 
upon informed consent. Demographics data are reported 
in Additional file 1: Table S1 and S2. Samples from sub-
jects receiving antibiotic treatment were excluded from 
the study. Normal breast specimens were collected as 
detailed in the KTB website (https:// komen tissu ebank. 
iu. edu/ resea rchers/ sop. php). Briefly, the mammary skin 
was sterilized and numbed with 10 ccs of 1% lidocaine. 
A nick incision was made with a sterile scalpel and up 
to six cores were taken from the upper outer quad-
rant of the breast using the ATEC Breast Biopsy System 
(Hologic Inc, Bedford, MA). The tissue cores were then 
transported to the tissue processing room and either fro-
zen in liquid nitrogen within 10  min and subsequently 
stored at − 195 °C or fixed in formalin or PAXgene. For 
each sample, an hematoxylin and eosin-stained section 
from a paraffin-embedded tissue core was analyzed by a 
pathologist. All the normal specimens used for this anal-
ysis lacked clinical and histological breast abnormalities 
and included a relatively high epithelial content (cellular-
ity > 40%). Lifetime risk of developing BC was estimated 
by using the Tyrer-Cuzick risk score (IBISv8) as previ-
ously described [24, 25]. A threshold of 20% was used to 
separate high- (> 20%, N = 54) from average-risk (≤ 20%, 
N = 349) individuals.

To control for possible environmental microbial con-
tamination in the breast specimens, a specimen container 
filled with 5 ml of sterile saline or water was left open in 
the operating room during breast surgery. Moreover, a 
second container with sterile water was used to quickly 
wash gloves and tools (forceps) upon the procedure. 
Since tissue specimens were taken in different times and 
locations over the past 12  years by the KTB, it was not 
possible to get environmental controls retroactively from 
all locations and, therefore, the environmental controls 
that were collected on November 2019 at the IUSCCC 
event were used to represent a typical harvesting and 
processing room. In addition, negative controls account-
ing for the kit buffers and columns were included. These 
environmental controls were stored at − 80  °C and pro-
cessed in parallel with tissue specimens (Additional file 1: 
Table S3). Furthermore, QIAseq 16S/ITS Smart Control 
was used as a positive control for library construction 
steps.

Bacterial DNA extraction
Each tissue core (80–150 mg) was divided in two pieces 
using a sterile scalpel and one portion was processed for 
bacterial DNA extraction. Tissue processing was per-
formed under sterile conditions and the laminar flow 
hood (AirScience, PCR-36), the pipettes, and sterile 
disposable material (filter tips’ boxes, petri dishes and 
knives) were sprayed with 100% ethanol followed by 

Table 1 Demographics of the heathy and breast cancer cohorts

ER estrogen receptor, PR progesterone receptor, HER2 human epidermal growth 
factor receptor 2, AC adenocarcinoma, C carcinoma, DCIS ductal carcinoma 
in situ, LCIS lobular carcinoma in situ, ILC infiltrating lobular carcinoma, IDC 
invasive ductal carcinoma

Healthy Breast cancer

Total N 403 76

Age (median) 50 56

Menopausal status (%)

 Pre 180 (44%) 24 (42%)

 Post 195 (49%) 52 (68%)

 Uterine ablation 28 (7%)

Body mass index (%)

 < 30 136 (34%) 11 (15%)

 ≥ 30 267 (66%) 17 (22%)

 N.A 48 (63%)

Racial background (%)

 Caucasian 294 (73%) 59

 African American 78 (20%) 13

 Asian 22 (5%) 1

 Other/N.A 9 (2%) 3

Hispanic (%) 24 (6%) 2

Parity (%)

 Nulliparous 21 (5%) N.A

 Parous 382 (95%) N.A

Age at menarche (%)

 < 12 84 (20%) N.A

 ≥ 12 319 (80%) N.A

Ever breastfed 358 (89%) N.A

Ever smoker (%) 88 (22%) N.A

Tyrer-Cuzick score > 20 54 N.A

Prior treatment (chemo, Surgery) 28 (7%) 35 (56%)

Developed breast cancer later 24 (6%) N.A

Tumor biomarkers

 ER positive N.A 47 (62%)

 PR positive N.A 40 (52%)

 HER2 positive N.A 26 (35%)

Tumor grade

 1 N.A 8

 2 N.A 25

 3 N.A 18

Tumor histology

 IDC N.A 17

 ILC N.A 2

 DCIS N.A 2

 LCIS N.A 1

 AC N.A 1

 C N.A 2

https://komentissuebank.iu.edu/researchers/sop.php
https://komentissuebank.iu.edu/researchers/sop.php
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30  min UV prior to their use. Semiautomatic purifica-
tion of the microbial DNA was performed by using the 
QIAcube Connect robotic workstation (Qiagen, Ger-
mantown, MD, cat#9245208) and the QIAamp DNA 
Microbiome kit (Qiagen, cat# 51704) following a slightly 
modified version of the manufacturer’s instructions. The 
protocol included the following steps: Tissue homogeni-
zation. The tissue core was added to 2-ml sample tubes 
RB (Qiagen, cat# 99038) with 500 µl PBS buffer + 500 µl 
AHL buffer + 35 μl 1 M DTT + 70 µl proteinase K. Tubes 
were placed in Thermomixer R (Eppendorf, Enfield, 
CT), and incubated 1  h at 56  °C and 600  rpm speed, 
and, after a centrifugation step at 10,000×g for 10  min, 
the supernatant was carefully removed. Next automatic 
DNA extraction was performed on the QIAcube Con-
nect instrument. Host DNA degradation. A total of 
190  μl Buffer RDD and 25  μl diluted Benzonase (1:10) 
were added to the pellet. After mixing, the tubes were 
incubated at 37  °C for 30 min at 600 rpm. Proteinase K 
(20  μl) was added and samples were incubated at 56  °C 
and 600 rpm for 30 min. A total of 200 μl Buffer ATL was 
added. The mixture was then transferred manually under 
laminar hood into Pathogen Lysis Tubes. Lysis of bacte-
rial cells. The tubes were placed into BeadBug instrument 
(Benchmark, cat# D1030) for bead beating. A speed of 
4,000  rpm was applied twice for 45  s each time with a 
90 s interval between beatings. Tubes were centrifuged at 
10,000×g for 1 min. Supernatant was transferred manu-
ally under laminar hood into 1.5-ml tubes and placed in 
the QIAcube Connect instrument again for the second 
part of the protocol. A total of 40  μl Proteinase K was 
added followed by incubation at 56  °C and 600  rpm for 
30 min. Then, 200 μl Buffer APL2 was added followed by 
an incubation at 70 °C for 10 min. DNA binding. A total 
of 200 μl 100% ethanol was added to the lysates and the 
mixture was applied onto QIAamp UCP Mini Columns 
and centrifuged at 6000×g for 1 min. DNA wash and elu-
tion. DNA on the columns was washed with 500 μl Buffer 
AW1 followed by centrifugation and 500 μl Buffer AW2 
and centrifugation. DNA was then eluted with 30  µl of 
AVE Buffer.

16S rRNA sequencing
Bacterial DNA samples were submitted to the Center 
for Medical Genomics at Indiana University where they 
were quantified using the Qubit dsDNA broad-range 
assay (Thermo Scientific). Libraries were created using 
the QIAseq 16S/ITS 96-Screening Panel (Qiagen), which 
included primers covering all nine hypervariable regions 
of the 16S rRNA (V1V2, V2V3, V3V4, V4V5, V5V7, 
and V7V9). The primers are listed in Additional file  1: 
Table  S4. The libraries were generated separately and 
then quantified on a Bioanalyzer DNA 1000 chip (Agilent 

Technologies, Santa Clara, CA, USA), and normalized to 
2 nM. Once pooled, denatured, and diluted to a final con-
centration of 10  pM, the libraries were sequenced with 
an Illumina MiSeq (San Diego, CA, USA). The variable 
regions targeted by the amplicons ranged in size from 
200 to 300 bp.

The pooled samples were demultiplexed using Cuta-
dapt 3.4 [26] from within QIIME2 2021.4 (https:// qiime2. 
org) (28) to separate reads based on the variable region 
primers. Then, Divisive Amplicon Denoising Algorithm 
(DADA) 2 [27] was used for quality filtering, sequence 
denoising, and calling amplicon sequence variants 
(ASVs). DADA2 was run with the parameters "-p-trunc-
len-f 200 -p-trunc-len-r 195" meaning the forward reads 
was trimmed to 200 bp and the reverse read was trimmed 
to 195  bp before the forward and reverse reads were 
merged. Chimeric ASVs were identified and removed 
using the uchime-denovo command from the QIIME2 
VSEARCH [28] plugin. Remaining ASVs were classi-
fied using the 138.1 released of the SILVA SSU database 
[29]. In both the samples and negative controls, 1.6%-7% 
(based on the variable region) of the ASVs were assigned 
to the domain Eukaryota (human mitochondria) and 
were thus excluded in downstream analyses (Additional 
file 1: Table S5). Moreover, removal of the contaminating 
taxa based on their higher frequency in low-concentra-
tion samples and prevalence in negative control samples 
was performed using decontam (https:// github. com/ 
benjj neb/ decon tam) as previously described [30]. Violin 
plots prior to and after this decontamination step were 
generated using the Seaborn Python package [31] and are 
shown in Additional file  2: Fig S1. Next, alpha-diversity 
and beta-diversity were calculated, correlated with sam-
ple metadata, and plotted using QIIME2 (https:// view. 
qiime2. org/). Operational Taxonomic Units (OTU) were 
then generated at 97% sequence similarity using Abun-
dantOTU + 0.95b [32] and used for the graphical repre-
sentation of the data.

The sequence data were deposited in the National 
Center for Biotechnology Information (NCBI)-Sequence 
Read Archive (SRA) under the accession number 
PRJNA867176.

RNA extraction and transcriptome analysis
The second piece of the frozen normal breast tissue cores 
was processed for RNA extraction. First the tissues were 
homogenized as previously described [24]. Briefly, the tis-
sue was placed into 2-ml prefilled tubes containing 3 mm 
zirconium beads (Benchmark Scientific, cat.# D1032-30), 
350  µl Lysis Buffer and 2-Mercaptoethanol, and were 
homogenized on BeadBug 6 homogenizer (Benchmark 
Scientific) in a cold room at the following conditions: 
4000 rpm for 45 s was repeated twice with 90 s rest time. 

https://qiime2.org
https://qiime2.org
https://github.com/benjjneb/decontam
https://github.com/benjjneb/decontam
https://view.qiime2.org/
https://view.qiime2.org/
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Then, the samples were loaded into the QIAcube Con-
nect workstation and total RNA was extracted using 
the AllPrep DNA/RNA/miRNA kit (Qiagen). The RNA 
concentration and quality were assessed using Agilent 
2100 Bioanalyzer. A RIN (RNA Integrity Number) ≥ six 
is required to pass the quality control. Of the total RNA 
samples, 190 samples passed the quality control step 
and were submitted for sequencing.  cDNA library was 
prepared using the KAPA RNA HyperPrep kit (Roche, 
Wilmington, MA) on a BiomeK Automated workstation 
(Beckman coulter, Indianapolis, IN) and sequenced using 
Illumina NovaSeq 6000.  Sequenced reads were adapter 
trimmed and quality filtered using Trimmomatic ver. 0.38 
[33] setting the cutoff threshold for average base qual-
ity score at 20 over a window of 3 bases, excluding the 
reads shorter than 20 bases post-trimming (parameters: 
LEADING:20 TRAILING:20 SLIDINGWINDOW:3:20 
MINLEN:20). Cleaned reads were mapped to Human 
genome reference sequence GRCh38.p12 with gencode 
v.28 annotation, using the RNA-seq aligner, STAR ver-
sion STAR_2.7.3a [34]. Read pairs mapping concordantly 
and uniquely to the eon regions of the annotated genes 
were counted using featureCounts tool ver. 2.0.0 [35] of 
subread package. Read alignments to antisense strand, 
or to multiple regions on the genome or those overlap-
ping with multiple genes were ignored (parameters: -s 2 
-p -B -C). Differential expression analysis was performed 
using DESeq2 ver. 1.24.0 [36] and the p-values were cor-
rected for multiple-testing using the Benjamini–Hoch-
berg method. False discovery rates (FDR) were generated. 
Transcriptome profiles were divided based on the bacte-
rial abundance (OTU) into high (above the average OTU 
value) and low (below average OTU value) group. To 
account for batch effect, two sample batches were ana-
lyzed separately, and the resulting data were then merged 
to generate the final list of differentially expressed genes 
(DEGs). Pathway analysis was performed by interrogating 
the Kyoto encyclopedia of genes and genomes (KEGG, 
https:// www. genome. jp/ kegg/); because of the absence 
of DEGs in the Acetobacter aceti analysis at FDR < 0.05, 
a threshold of p-value = 0.01 was used to build paths 
and nodes [37]. Molecular network was created using 
STRING (https:// string- db. org/).

The RNA-seq data were submitted to gene Expression 
Omnibus (GEO) under accession number GSE205725.

Statistical analysis
Data are presented as mean ± standard deviation (SD), 
and statistical significance was analyzed using Graph-
Pad Prism 9 (GraphPad LLC, San Diego, CA, USA). 
Comparisons of means between two groups or among 
more than three groups were analyzed using two-tailed 

Student’s t-test and one-way analysis of variance, 
respectively. Differences were considered statisti-
cally significant at p < 0.05. Shannon diversity indexes 
between the various amplicons were compared via 
pairwise Kruskal–Wallis test. Differentially expressed 
genes between high- and low-bacterial abundance sam-
ples were selected based on the Benjamini–Hochberg 
adjusted p-values. Correlation between bacterial abun-
dance and either BC risk factors or transcriptome pro-
filing was determined via Pearson’s correlation analysis.

Results
Study cohort: sample preparation
Fresh frozen breast tissue cores from 403 cancer-free 
women and 76 BC patients (31 Tumor, 61 NAT, 9 Met) 
were processed for microbiome analysis. As previously 
reported, the study of microbiome in low biomass tis-
sue, such as the breast, required both specific technical 
procedures and bioinformatics analyses to address two 
types of potential contaminants: environmental con-
tamination from other bacteria and host-derived ampli-
fication which may produce higher number of reads 
than those generated by the limited microbial popula-
tion [38]. In the processing of the fresh frozen breast 
tissue cores donated by either healthy or cancer-bear-
ing women, every possible effort was made to preserve 
sterility, including the use of gloves, face mask, lab coat, 
laminated biological cabinet, single-use tubes and tips, 
UV-mediated sterilization of the DNA extraction pro-
cessor, and alcohol decontamination of any surface 
[38]. Moreover, to account for any potential environ-
mental contaminants, several negative controls were 
used including water samples collected in the biopsy 
operating room, controls for the DNA extraction kit 
and for the processor (Additional file  1:  Table  S3). 
These control samples were included in each extraction 
group to account for the batch effect. Although sterile 
procedures were adopted, post-sequencing data analy-
sis revealed the presence of human mitochondrial ASVs 
in both samples and negative controls, especially under 
16S V3V4 region amplification (Additional file  2: Fig 
S1A, B). This region therefore was removed from fur-
ther analysis. All amplified regions also contained bac-
teria-specific reads in the negative control samples. To 
address these limitations, two phase of data decontami-
nation were performed. First the human ASVs were 
removed; then, by employing the methods described by 
Davis et  al. [30], most of the environmental contami-
nants were eliminated (Additional file 2: Fig S1C). Nev-
ertheless, as shown in the heatmap in Additional file 2: 
Fig S2, bacterial-related reads were still detected in the 
negative control samples.

https://www.genome.jp/kegg/
https://string-db.org/
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The analysis of low biomass breast tissue generates high 
background signal
The presence of high levels of bacterial DNA in no-tem-
plate controls, mostly matching with general contami-
nants, was also described in previous reports [38]. To 
assess for potential cross-contamination between sam-
ples, OTU detected in the negative controls (Neg CTR) 
were taxonomically characterized at both family and 
genus scale. At the family level, the microbial community 
in the Neg CTR was mostly dominated by Burkholde-
riaceae (26%), Propionibacteriaceae (4–11%), Coma-
monadaceae (5–8%), Bacillaceae (5%) and other taxa 
previously described as general environmental contami-
nants [37] (Additional file 2: Fig S3). At the genus level, 
Burkholderia (10.5–32%), Cutibacterium (4.2–11.8%), 
Streptococcus (2.5–3.5%), and Bacillus (3–3.1%) were 
found to be abundant in the Neg CTR group (Additional 
file  2:Fig S4). Moreover, as mentioned in the Methods 
section, various Neg CTRs were used during each DNA 
extraction step and included the following conditions: 
extraction buffer (EB, N = 30), extraction room and gloves 
(ERG, N = 4), harvesting room (HR, N = 7), harvesting 
room gloves (HRG, N = 10), homogenization buffer (HB, 
N = 26), processing forceps (PF, N = 6), processing room 
(PR, N = 6), library internal control or smartcontrol (SC, 
N = 13). We examined the contribution of each Neg CTR 
type at family and genus level (Additional file  2: Fig S3 
and S4), revealing how the microbial contaminant is dif-
ferent in the several Neg CTRs, with the HR and HRG 
displaying the higher and the SC the lower OTU values, 
thus suggesting that the inclusion of the appropriate 
controls is critical for identifying all the environmental 
contaminants.

Variant regions in normal and tumor breast tissue
Sequencing of the 16S rRNA gene is a common approach 
for the identification, classification, and quantitation 
of microbial species (Fig.  1A, [39]). Existing studies on 
breast tissue microbiota have applied different detec-
tion methods analyzing different variable regions [10, 
40]. We examined amplicons that together covered all 
nine regions to determine any difference in microbial 
detection accuracy and efficiency within the normal 
breast tissues and between normal and tumor tissues 
(Fig.  1, Additional file  1: Table  S3). Thus, the taxonomy 

of Normal (N = 403), NAT (N = 61), Tumor (N = 31), and 
Metastatic (Met, N = 9) tissues was performed on reads 
obtained from the sequencing of five amplicons covering 
all hypervariable regions of the pca.

We performed a principal component analysis (PCA) 
based on Bray–Curtis distance illustrating the differences 
between bacterial communities of the normal samples 
at both family and genus level by each amplified region 
(Fig. 1B). The PCA revealed three clusters, two of which 
indicate a major difference in the microbial composi-
tion within the Normal group present in all the ampli-
fied regions, except for those generated by V2V3, which 
instead formed a third cluster. The microbial diversity for 
each of the five amplified regions was calculated at both 
the family and genus level (Fig. 1C). The Shannon alpha 
diversity obtained from V2V3 was significantly lower 
than that of the other four regions (Family: vs V1V2 
p = 7.2E−08, vs V4V5 p = 2.7E−07, vs V5V7 p = 6.1E−05, 
and vs V7V9 p = 7.4E−03; Genus: vs V1V2 p = 1.2E−10, 
vs V4V5 p = 2.8E−09, vs V5V7 p = 5.8E−07, and vs V7V9 
p = 5.1E−04). After normalization and decontamination, 
mean read counts obtained from the Normal (median: 
9,178 ± 3,524), NAT (median: 11,116 ± 4,925), Tumor 
(median: 5,496 ± 3,024), and Met (median: 12,629 ± 7,186) 
samples were not significantly different (two-tailed t-test 
p > 0.05). However, when comparing the total read count 
by amplified region, the V2V3 generated the lowest num-
ber of reads in all the experimental groups (Fig. 1D). This 
could be also a result of sequencing bias, or competition 
within the Qiagen library prep process. Nevertheless, 
because of the lack of clustering with the other regions 
and the lower microbial diversity, the V2V3 dataset was 
excluded from further analysis.

Normal breast is enriched in Lactobacillaceae, 
Acetobacterraceae, and Xanthomonadaceae families
Microbial abundance at family, genus, and species level 
was evaluated in Normal, NAT, Tumor, and Met sam-
ples examining the data generated by the amplification 
of V1V2, V4V5, V5V7, and V7V9 regions (Additional 
file 2:  Fig S2). At the family level, among the most abun-
dant bacteria (> 2%) detected in the normal breast, above 
the level of the Neg CTRs, Lactobacillaceae (6.4%, Fir-
micutes phylum), Acetobacterraceae (7.5%), and Xan-
thomonadaceae (3.8%, both Proteobacteria phylum) 

Fig. 1 Variable regions analysis of the breast tissue. A Microbiome analysis of the breast was performed using primers covering all nine 
hypervariable regions of the 16S rRNA (V1V2, V2V3, V3V4, V4V5, V5V7, and V7V9). B Principal component analysis based on Bray–Curtis distance 
illustrating the differences between bacterial communities among 40 representative Normal samples via the indicated hypervariable regions 
at both family and genus level. C Shannon diversity index for each of the hypervariable region was determined at both family and genus level. D 
Total read values from the sequencing of each indicated hypervariable region for normal (Normal), normal adjacent to the tumor (NAT), tumor 
breast tissues (Tumor), and breast cancer metastasis (Met) samples. Nonparametric two-tailed Mann–Whitney U test was used for statistical analysis. 
*p < 0.05; **p < 0.001; ***p < 0.0001

(See figure on next page.)



Page 7 of 21German et al. Breast Cancer Research           (2023) 25:82  

Fig. 1 (See legend on previous page.)
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were consistently enriched in Normal via all variant 
region-dependent analyses (Fig.  2A, Additional file  2: 
Fig S5 and Additional file 1: Table S6). Among the most 
abundant genera (> 2%), high abundance of Acetobacter 

(Proteobacteria phylum) and Liquorilactobacillus (Firmi-
cutes phylum) was detected in Normal via the four vari-
ant region-related analyses (Fig. 2B, Additional file 2: Fig 
S6 and Additional file 1: Table S7). Within the microbial 

Fig. 2 Bacterial abundance in breast tissues. Bacteria taxonomy was examined in the normal (Normal), adjacent normal (NAT), tumor breast tissues 
(Tumor) and breast cancer metastases (Met) at either family (A) and genus (B) level. Data from the V1V2 amplified region are shown. Most abundant 
bacteria (≥ 2% abundance) are displayed in the histobar graph on the left, whereas OTU count of the three most abundant bacteria is shown 
on the right as the scatter plot, where each dot represents a sample (value of 0 are not included because of the logarithmic scale). Nonparametric 
two-tailed Mann–Whitney U test was used for statistical analysis. *p < 0.05; **p < 0.001
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family Lactobacillaceae, also Lacticaseibacillus and Len-
tilactobacillus, although showing an abundance < 2%, 
were highly represented in Normal tissue as compared 
with the other sample types (Additional file 1: Fig S7).

We then examined the microbial abundance in NAT at 
the family level. Cyanobacteria (labeled as Chloroplasts in 
SILVA database) and Corynebacteriaceae were detected 
in NAT and enriched (4.2% and 4.1%, respectively) as 
compared with Normal (2% and 2.8%, respectively), 
although the difference lacked statistical significance. 
Independently of the amplified variant region, Lacto-
bacillaceae showed a significant lower abundance in the 
NAT compared with the Normal (V1V2 p = 0.02, Fig. 2A; 
V4/V5 p = 0.03; V5V7 p = 0.0012; V7V9 p = 0.002, Addi-
tional file 2:Fig S6). Similarly, Acetobacterraceae resulted 
less abundant in NAT when compared with Normal 
(V1V2 p = 0.043; V4/V5 p = 0.24; V5V7 p = 0.6; V7V9 
p = 0.02). The third most abundant bacterial family in 
Normal, Xanthomonadaceae, also showed a limited pres-
ence in NAT (V1V2 p = 0.003; V4/V5 p = 0.05; V5V7 
p = 0.0008; V7V9 p = 0.02). However, no significant dif-
ference was detected between NAT and Tumor groups, 
indicating that NAT is more similar in this respect to 
tumor than normal tissue (Fig. 2A, Additional file 2: Fig 
S5). At the genus level, when compared with the Normal 
group, NAT showed a lower abundance in both Aceto-
bacter (V1V2 p = 0.01; V4/V5 p = 0.2; V5V7 p = 0.3; V7V9 
p = 0.008) and Liquorilactobacillus (V1V2 p = 0.0006; 
V4/V5 p = 0.0005; V5V7 p = 0.0016; V7V9 p = 0.01), 
whereas no significant difference with the Tumor group 
was detected (Fig. 2B, Additional file 2: Fig S6). Interest-
ingly, Ralstonia’s (Proteobacteria phylum) abundance 
was significantly increased in NAT as compared with the 
Normal samples in the V1V2 (p = 0.018, Fig.  2B), V5V7 
(p = 0.0086), and V7V9 (p = 0.0075) analyses (Addi-
tional file 2:Fig S6), whereas no significant difference was 
detected in the V4V5 analysis (Additional file 2:  Fig S6).

Next, the bacterial abundance in Tumor at the fam-
ily level was evaluated. Although not highly statisti-
cally different (p > 0.05) as compared with the Normal 
because of the limited cohort size and high inter-sample 
variability, the Tumor samples showed a relative enrich-
ment in Staphylococcaceae (5.5% vs 3.6% in Normal) 
and Corynebacteriaceae (3.9% vs 2.8% of the Normal). 
Moreover, a significant lower abundance in Lactobacil-
laceae (V1V2 p = 0.009; V4/V5 p = 0.007; V5V7 p = 0.007; 
V7V9 p = 0.04), Acetobacterraceae (V1V2 p = 0.002; V4/

V5 p = 0.004; V5V7 p = 0.002; V7V9 p = 0.005) and Xan-
thomonadaceae (V1V2 p = 0.02; V4/V5 p = 0.02; V5V7 
p = 0.0005; V7V9 p = 0.01) was detected in the Tumor as 
compared with the Normal group (Fig. 2A and Additional 
file  2:   Fig S5). At the genus level, similarly to the NAT 
group, Acetobacter (V1V2 p = 0.0003; V4/V5 p = 0.006; 
V5V7 p = 0.004; V7V9 p = 0.003) and Liquorilactobacillus 
(V1V2 p = 0.007; V4/V5 p = 0.001; V5V7 p = 0.007; V7V9 
p = 0.03) were absent or of low abundance in most Tumor 
samples, whereas Ralstonia was highly abundant when 
compared with Normal (V1V2 p = 0.04; V4/V5 p = 0.04; 
V5V7 p = 0.04; V7V9 p = 0.03) (Fig.  2B and Additional 
file  2: Fig S6). Staphylococcus also appeared enriched 
(5.5% vs 3.5% in Normal), but the difference was not sta-
tistically significant. Because of the limited sample size, 
no statistically significant differences were obtained in 
any of the comparative analyses with the Met group.

Although the four evaluated regions showed simi-
lar results, the OTU count from the V1V2 region was 
higher than that obtained by amplifying the other 
regions for Lactobacillaceae (p = 0.04), Acetobacterraceae 
(p < 0.0001), and Xanthomonadaceae (p = 0.02) (Addi-
tional file 2: Fig S8). Hence, the V1V2 region was selected 
for further analysis.

Acetobacter aceti, Lactobacillus paracasei and vini, and 
Xanthomonas sp. are highly abundant in normal breast 
tissue.

A more detailed analysis was performed at species 
level evaluating the data from the V1V2 region ampli-
fication (Additional file  1: Table  S8). PCA of Weighted 
UniFrac and Unweighted UniFrac beta diversity (Fig. 3A, 
B) revealed overlapping data for the four types of breast 
tissue, indicating the existence of only small differences 
between them. However, 55 Normal samples clustered 
together, separately from the others (circled in red in 
Fig. 3A, B), due to a high relative abundance of the spe-
cific bacterial species described below. The average abun-
dance across Neg CTR was calculated and subtracted 
from the samples to obtain specific microbial species in 
the Normal, NAT, Tumor and Met groups (Fig. 3C). The 
most abundant bacterial species detected in Normal 
breast tissues was Acetobacter aceti at 6.5% abundance, 
which was reduced to 3.7% in NAT, and to the level of 
the Neg CTR for the Tumor and Met samples (Fig. 3D). 
Xanthomonas sp., Lactobacillus vini, and Lactobacil-
lus paracasei resulted highly abundant in the Normal 
group (3.6%, 1.8%, and 1.4%, respectively), whereas the 

Fig. 3 Bacterial abundance in breast tissues at species level. Principal component analysis of Weighted UniFrac (A) and Unweighted UniFrac (B) 
plots showing microbiota beta diversity clustering, heat map (C) and bar chart (D) demonstrating relative abundance of species after 16S rRNA 
sequencing of healthy (Normal), adjacent normal (NAT), and tumor (Tumor) breast tissues as well as breast cancer metastases (Met). (E) Bacterial 
abundance in Normal, NAT, Tumor and Met samples, each dot represents a sample. Because of the use of the log10 scale values of 0 are not shown. 
Nonparametric two-tailed Mann–Whitney U test was used for statistical analysis. *p < 0.05; **p < 0.001; ***p < 0.0001

(See figure on next page.)
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Fig. 3 (See legend on previous page.)
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abundance of these bacteria in the other samples was 
below 0.6%. Ralstonia and Staphylococcus pasteuri were, 
instead, enriched in the Tumor samples (10.4% and 4.6%, 
respectively) with Ralstonia showing a 12.4% abundance 
also in the NAT samples. Statistical difference in the 
abundance of these bacterial species was then evaluated 
in more details.

Ralstonia was more abundant in NAT and tumor as 
compared with Normal (p = 0.014, p = 0.018, respectively) 
(Fig.  3E). Lactobacillus vini was expressed only in the 
Normal samples (p < 0.001 for both). Acetobacter aceti 
was more abundant in Normal than NAT (p = 0.016) and 
Tumor (p = 0.0003). Lactobacillus paracasei abundance 
also was higher in Normal than NAT (p = 0.0014) and 
Tumor (p = 0.0007). Xanthomonas sp. was more abun-
dant in Normal as compared with NAT (p < 0.0001) and 
Tumor (p = 0.01). When examining the OTU values of 
Staphilococcus pasteuri, although the average value in 
Tumor was greater than that in Normal tissues, no sig-
nificance difference was detected between the samples.

Correlation of bacterial abundance with risk factors for BC 
development
Association of BC risk factors with BC-related dysbiosis 
has been previously reported [41]. However, the evalu-
ation of such association in cancer-free breast speci-
mens has never been described. Here, we employed 
Pearson’s correlation analysis to examine the direct or 
inverse association of risk factors for BC with the abun-
dance, measured as OTU, of Ralstonia, Acetobacter aceti, 
Lactobacillus vini, Lactobacillus paracasei, and Xan-
thomonas sp. in normal breast tissues (Table  2,  where 
bold value indicate p < 0.05, and Fig.  4). While none of 
the detected bacterial species abundance correlates with 
the Tyrer-Cuzick risk score, the four microbial species 
abundant in Normal showed an inverse correlation with 
age (p < 0.001), with only Acetobacter aceti inversely cor-
relating also with age at first birth (p < 0.05; Table 2). No 
correlation with BMI and age at menarche was observed 
(Table  2). Interestingly, the same four microbial species 
identified abundant in Normal highly correlated with one 
another (r = 0.8, p < 0.0001, Table  2, complete inter-bac-
terial correlation analysis in Additional file  1:Table  S9) 
suggesting a potential inter-bacteria interaction [42]. We 
then examined the abundance of the five bacterial spe-
cies in relation to predisposition to BC. Normal breast 
tissues donated by either women with mutation in estab-
lished BC predisposition genes [N = 30, including BRCA1 
and BRCA2 mutations (N = 15)] or women who donated 
their biopsy prior to a BC diagnosis (N = 24, [20, 43]) 
were analyzed. Only Acetobacter aceti was enriched in 
the not-predisposed tissue as compared to the breast tis-
sues predisposed to cancer (p = 0.04, Fig.  4A). Next, we 

examined the effect of racial background on the micro-
bial abundance in the normal breast donated by African 
American (AA, N = 78), Asian (N = 22), and Caucasian 
(White, N = 294). Acetobacter aceti, Lactobacillus vini, 
Lactobacillus paracasei, and Xanthomonas sp. appeared 
more abundant in breasts from African American 
women than those of Caucasian subjects (p < 0.0001 for 
all comparisons, Fig. 4B). We then investigated potential 
environmental risk factors for BC, such as smoking and 
drinking. No significant difference in bacterial abundance 
was observed in relation to either smoking or current 
alcohol consumption (Fig. 4C, D). Because estrogen lev-
els and breast microenvironment are much different in 
premenopausal and postmenopausal women, we exam-
ined the abundance of these bacteria in relation to meno-
pausal status (Fig.  4E). Although the bacteria appeared 
slightly more abundant in breasts from premenopausal 
women, no significant difference was detected between 
the pre- and postmenopausal groups. Premenopausal 
women were then evaluated to determine the relation 
of microbial composition with parity and breastfeed-
ing. Acetobacter aceti, Lactobacillus vini and paraca-
sei, and Xanthomonas sp. were abundant in the breasts 
of nulliparous women as compared to parous subjects 
(all p < 0.0001, Fig.  4F). Furthermore, Lactobacillus vini 
(p = 0.003) and paracasei (p = 0.002), and Xanthomonas 
sp. (p = 0.009) were also abundant in the never-breastfed 
women (N = 6) as compared with women who breastfed 
(N = 156) (Fig. 4G).

Bacterial abundance in the normal breast correlates 
with metabolism‑ and immune‑related gene dysregulation 
in the host tissue
The interaction between the microbiome and the host 
biological processes has been widely reported [7–9, 
12–14]. The presence and effects of bacterial communi-
ties within a host could be one additional environmen-
tal factor with a potential role in the pathophysiological 
process of breast carcinogenesis. Transcriptomic analy-
sis was performed on the second half of the breast tis-
sue core from 190 Normal samples selected for their 
best RNA quality and yield (Additional file 1: Table S1). 
Taking into account any batch effect, differential 
expression analysis was performed based on the micro-
bial abundance OTU values for Ralstonia, Acetobacter 
aceti, Lactobacillus vini, Lactobacillus paracasei, and 
Xanthomonas sp., and differentially expressed genes 
(DEGs) between high (OTU values ≥ average) and low 
(OTU values < average) group were identified (Addi-
tional file 1: Table S10). A threshold of FDR < 0.02 was 
applied for the DEG analysis except for the analysis 
of gene expression alterations associated with Aceto-
bacter aceti, which generated only 22 DEGs at p < 0.01 
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Fig. 4 Association of microbial abundance in normal breast tissues with breast cancer risk factors. Pearson’s correlation analysis was performed 
to examine the link of the abundance of Ralstonia (Ral), Acetobacter aceti (Acet), Lactobacillus vini (L.vini), Lactobacillus paracasei (L.par), 
and Xanthomonas sp. (Xantho) with breast cancer susceptibility (A), racial background (B), smoking (C), menopausal status (D), parity (E) and recent 
and past breastfeeding (F). *p < 0.05; **p < 0.001; ***p < 0.0001
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(FDR > 0.2), thus suggesting a limited influence of Ace-
tobacter aceti abundance on the tissue homeostasis 
(Additional file  1: Table  S10). Interestingly, the genes 
disregulated in the Lactobacillus vini and Xanthomonas 
sp. groups showed a 51.2%-69.4% overlap, with com-
mon genes being mostly involved in acetylation 
(p = 0.003) and RNA binding (p = 0.0008) (Fig. 5A, B).

Pathway analysis was then performed using Kyoto 
Encyclopedia of Genes and Genomes (KEGG) data-
base [37]. Normal tissues abundant in Acetobacter aceti 
were enriched for genes involved in tyrosine metabolism 
(p = 0.03) and IL-17 signaling (p = 0.04) (Fig. 5C). Among 
the DEGs, the highest upregulated gene encoded for 
the endoplasmic reticulum chaperone protein, CLGN 

Fig. 5 Link between microbial composition and gene enrichment in the breast. Transcriptomic analysis of the normal breast tissues (N = 190) 
was performed. (A) Venn diagram shows the common differentially expressed genes linked to the microbial abundance of Acetobacter aceti (A. 
aceti), Lactobacillus vini (L. vini), Lactobacillus paracasei (L. paracasei), Xanthomonas sp, and Ralstonia. B) STRING-generated molecular pathway 
of the genes enriched in both Lactobacillus vini and Xanthomonas sp. analyses. KEGG pathway analysis was performed for genes enriched in tissues 
abundant with Acetobacter aceti (C), Lactobacillus vini (D), Lactobacillus paracasei (E), Xanthomonas sp. (F) and Ralstonia (G)
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(logFC: 1.29, p = 0.0001), whereas the most downregu-
lated gene was KTR16 (logFC:-1.49, p = 0.0001), which 
also inversely correlated with the microbial level in the 
breast (r = − 0.15, p = 0.03). Breast tissue abundant in 
Lactobacillus vini displayed an enrichment in genes 
involved in immune response (KEGG labeled corona-
virus disease, p = 0.002), cell adhesion (p = 0.009), and 
cell cycle (p = 0.01) (Fig.  5D). MTND1P23, HMGB1P6, 
and CHRM3 resulted highly upregulated (logFC:7.44, 
FDR < 0.0001; logFC:1.54, FDR = 0.0007; logFC:1.44, 
FDR = 0.0009, respectively) and their expression 
directly correlated with Lactobacillus vini level (r = 0.23, 
p = 0.002; r = 0.26, p = 0.0003; and r = 0.27, p = 0.0001, 
respectively). Moreover, an inverse correlation with the 
expression of NDNF (r = − 029, p < 0.0001), SCD (r = − 
0.25, p = 0.0006), and MT-TS1 (r = − 0.29, p < 0.0001) 
was detected. Gene set enrichment analysis of the DEGs 
linked to Lactobacillus paracasei revealed the alterations 
of genes related to T cell receptor signaling (p = 0.02) 
and immune regulation of TRP channel (p = 0.002) 
(Fig. 5E). The abundance of Lactobacillus paracasei dis-
played, among other DEGs, the upregulation (logFC: 
2.08, FDR = 0.001) as well as direct correlation (r = 0.17, 
p = 0.02) with the transmembrane serine protease encod-
ing gene CORIN. Xanthomonas sp. abundant tissues 
showed an enrichment in genes linked with pyrimidine 
metabolism (p = 0.01), fatty acid biosynthesis (p = 0.04), 
and cell adhesion (p = 0.0001) (Fig.  5F). Xanthomonas 
sp.-linked DEGs analysis showed the upregulation of 
MTND1P23 (logFC: 7.5, FDR < 0.0001) and downregu-
lation of NDNF (logFC: − 5.06, FDR < 0.0001) and the 
stearoyl-CoA desaturase encoding gene SCD (logFC: 
− 6.28, FDR = 0.005). Also, similarly to Lactobacillus 
vini, microbial level correlated directly with HMGB1P6 
(r = 0.36, p < 0.0001) and CHRM3 (r = 0.28, p = 0.0001) 
and inversely with MT-TS1 (r = 0.28, p = 0.0001), NDNF 
(r = − 0.28, p < 0.0001), and SCD (r = − 0.25, p = 0.0005). 
Metabolic pathways appeared to be linked to the abun-
dance of Ralstonia in normal breast and included 
fructose (p = 0.003) and galactose (p = 0.03) metabo-
lism (Fig.  5G). In terms of genes, LALBA (logFC: 6.07, 
p < 0.0001), involved in lactose synthesis, was detected 
as the most upregulated, whereas PRODH (log: − 4.67, 
p = 0.0001) and DOK7 (logFC: − 2.46, p = 0.0005) were 
highly downregulated in Ralstonia-abundant nor-
mal breast tissues. However, no significant correlation 
between gene expression and microbial abundance was 
detected via Pearson analysis.

Discussion
Although distinct dysbiotic  bacterial  signatures  related 
to disease states are being increasingly recognized using 
high throughput sequencing techniques, the microbiome 

of healthy breast tissue remains underexplored. Here, 
we characterized the microbiome of the normal breast 
by examining a large cohort (N = 403) of breast tissue 
biopsies donated by healthy women. We identified bac-
teria uniquely abundant in the normal tissue as compared 
with the uninvolved tissue adjacent to tumor (NAT) and 
tumor and, for the first time, correlated their level with 
BC risk factors and host transcriptomic changes. Our 
data also confirmed that, as previously reported [43], 
NAT, often used as a surrogate for healthy controls, 
displays bacterial dysbiosis as compared with the nor-
mal breast tissue from healthy donors, similarly to what 
observed in tumor samples.

Recent findings demonstrated the existence of micro-
biota in internal organs once believed sterile, includ-
ing the lung, pancreas, and breast [14]. Regarding the 
source of the microbiota in the breast, several hypoth-
eses have been proposed and investigated including the 
skin via the nipple-areolar orifices, nipple-oral contact 
via lactation and/or sexual contact, and, more recently, 
translocation from the gastrointestinal tract [15, 44]. It is 
suggested that organ-specific microbiota plays a role in 
tissue homeostasis, tumor development, and therapeu-
tic resistance [16]. New discoveries in the cancer-related 
microbiome have been made possible with the use of 
next-generation sequencing technologies. However, 
considerable differences in the employed methodolo-
gies, with respect to specimen treatment after collection, 
DNA isolation, target hypervariable region selection 
for sequencing, and sequence analysis workflows, have 
resulted in considerable heterogeneity in results, delaying 
the assessment of the existence of a link between dysbio-
sis and BC. Inconsistency in the choice of hypervariable 
region amplified to define the breast tissue microbiota 
remains a major concern, especially since specific hyper-
variable regions are more likely to identify certain taxa 
[45]. In our study of the breast tissue, six amplicons cov-
ering the nine 16S rRNA hypervariable regions were 
examined (V1V2, V2V3, V3V4, V4V5, V5V7, and V7V9). 
Our  findings  determined the low specificity of V3V4 
and confirmed the data from He et al., showing a differ-
ence between the amplified regions in both alpha diver-
sity, with the V2V3 displaying the lowest diversity, and 
number of reads, with V1V2 generating overall a higher 
ASV count.

Investigation of low biomass specimens such as the 
breast tissue, where the microbiota abundance is rela-
tively limited as compared to microbe-rich organs as the 
guts, is challenging. The analysis of such low biomass 
tissue needs to consider the impact of external contami-
nants and experimental artifacts [38]. We used multiple 
“no template controls” such as storage buffers, elution 
buffers, or water in our study as good approximates for 
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contaminants introduced during sample collection and 
storage, extraction and library preparation steps. Hence, 
our analysis revealed not only the main contaminants 
(i.e., Burkholderiaceae and Propionibacteriaceae) often 
reported abundant in BC [46–48], but also that con-
taminants composition varied in relation to both nega-
tive control type and amplicon primers used for the 16S 
rRNA sequencing. This clearly indicates that appropriate 
negative control needs to be included in the workflow for 
microbiome analysis of the breast.

In breast tissue,  Proteobacteria  and Firmicutes have 
been reported to be the most abundant phyla, which is 
distinct from other tissues where these phyla, especially 
Proteobacteria, represent a small portion of the total 
bacterial load [10, 14, 16, 43]. Analysis of breast tumors 
and NAT from the same patient showed unique micro-
bial communities associated with tumors, with the high 
abundance of  Sphingomonas yanoikuyae  in normal tis-
sue and  Methylobacterium radiotolerans  in tumor tis-
sue [16]. Moreover, Banerjee et  al.  detected a distinct 
microbial signature associated with TNBC [17, 49]. 
Urbaniak et  al. reported that NAT from women with 
BC compared to tissue from healthy controls had higher 
relative abundance of Bacillus, Enterobacteriaceae, and 
Staphylococcus [10]. However, a study with a Mediterra-
nean population found more similarities than differences 
between NAT and tumors [50]. A recent publication from 
Tzeng et al. revealed that tumor tissues contained a much 
higher percentage of the families Pseudomonadaceae 
and Enterobacteriaceae and the genera Pseudomonas 
and Proteus [8]. Recently, Hoskinson et  al.  reported the 
compositional shifts in bacterial abundance in NAT and 
tumor tissues as well as breast tissues prior to a clinical 
manifestation of cancer as compared with healthy breasts 
[20, 43]. Independent from the findings’ variability, these 
reports suggest a link between microbial dysbiosis and 
BC. The variability in the specific bacteria identified 
can be largely explained by differences in methodology, 
not only in the care to avoid contaminants, but impor-
tantly, in the choice of “normal” controls. In early micro-
biome investigations, breast tissue obtained from women 
undergoing reduction mammoplasty were used as poor 
substitutes for healthy controls [10, 14]. These tissues 
present an hyperproliferative phenotype [51]. More 
recently, the histologically normal tissue surrounding the 
tumor lesions has been used to as the "healthy" control 
in these experiments [8, 48]. However, multiple recent 
publications have documented a “field effect” of BC, with 
histologically normal tissue displaying both genetic and 
epigenetic aberrations [20–23, 52].

With the exception of the investigation by Hoskinson 
et  al where 49 breast tissue cores from healthy women 
were examined, our study represents the first large-scale 

analysis of the microbiota of the normal breast. We 
detected Lactobacillaceae (Firmicutes phylum), Ace-
tobacterraceae, and Xanthomonadaceae (both Proteo-
bacteria phylum) as more abundant families (> 2%) and 
Acetobacter and Liquorilactobacillus as the more abun-
dant genera in the normal breast as compared to both 
the NAT and tumor samples. These findings further 
confirmed the biological difference between normal and 
NAT tissues and, as also reported by Hoskinson et  al. 
[43], the similarity in microbial composition between 
NAT and tumor tissue.

Four main bacterial species were identified as pre-
dominant in the normal breast as compared with the 
other tissue here analyzed: Lactobacillus paracasei, Lac-
tobacillus vini, Acetobacter aceti, and Xanthomonas sp. 
In exploring the roles of these bacteria in the breast, the 
literature pointed to possible involvement in metabolic 
pathways. The genus Lactobacillus, including Lactobacil-
lus paracasei, was previously reported to be more com-
mon in healthy breast tissues than in cancerous tissues 
and, because of its immunomodulatory effect, may have a 
role in BC prevention [18, 53]. Lactobacillus vini, gener-
ally isolated on organic matrices, was detected as mem-
ber of human fecal microbiota for the first time by Rossi 
et al. [54]. Acetobacter aceti is an aerobic bacterium wide-
spread in sugary, acidic and alcoholic niches. The inves-
tigation of this bacterium in human tissues is limited. 
Aghazadeh et al. showed that a strain of the same genus, 
Acetobacter syzygii, exhibited significant cytotoxicity 
toward a squamous cell carcinoma cell lines [55], suggest-
ing that, similarly to Lactobacillus, this bacterium may 
also have beneficial properties in the breast. Interestingly, 
synergistic interaction between Acetobacter and Lactoba-
cillus was reported in Drosophila melanogaster  gut and 
led to nutriments availability modulation with reduc-
tion in hist triglyceride [42]. In the Aghazadeh study, a 
direct correlation between the levels of these bacteria in 
the normal breast was also observed. The family  Xan-
thobacteraceae was reported decreased in abundance in 
NAT and tumor tissues compared with normal breast 
from healthy women, thus confirming our data [43]. Also, 
Xanthomonas sp. was recently found abundant (6%) in 
normal breast of Chinese women [46], but the literature 
on the role of this microbial species in human is very lim-
ited. Although, because of the decontamination approach 
here employed, the OTU levels were lower than those 
previously described, consistently with previous reports 
[18], tumor samples displayed an abundance of Entero-
bacteriaceae (1.2%), Staphylococcus (2%), Corynebacte-
riaceae (1.7%), Corynebacterium (0.98%), Anoxybacillus 
(3%), Prevotella (0.98%), and Rothia (0.5%) as compared 
to the Normal group. Nevertheless, Ralstonia (Proteo-
bacteria phylum), almost absent from the normal tissues, 
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showed higher abundance in both NAT and Tumor as 
compared with the Normal (p = 0.014, p = 0.018, respec-
tively). This bacterium was previously detected in human 
milk [56] and silicone breast implant biofilms [57]. Our 
data confirm previous findings indicating  Ralstonia  as 
the most dominant bacterial genus in the breast tumor 
tissues [58–60]; however, we also showed Ralstonia pres-
ence in the NAT. Interestingly, the fact that other studies 
report the abundance of Ralstonia in the normal breast is 
explained by their use of NAT as source of normal tissue.

Exogenous and endogenous factors can promote fluc-
tuations in microbial abundance and functions. Many 
of the important life-style risk factors for cancer like 
obesity, smoking, diet, and alcohol can also cause per-
turbations in the microbial composition [41]. Here, we 
examined the correlation between the abundance of Ral-
stonia, Acetobacter aceti, Lactobacillus vini, Lactobacillus 
paracasei, and Xanthomonas sp. in the normal breast tis-
sues and BC risk factors, such as age, parity, breastfeed-
ing, smoking, alcohol consumption, age at menarche, and 
body mass index. Moreover, a cohort of 58 breast tissues 
from women either at genetic risk for BC or who devel-
oped BC post-tissue donation [20, 43] was examined with 
respect to microbial enrichment. As opposed to the work 
by Tzeng et al., where subtle differences in microbial pro-
files between healthy control and high-risk tissues were 
detected [8], no significant difference was observed in 
our investigation except for Acetobacter aceti being less 
abundant in genetically predisposed breast tissue. Ralsto-
nia failed to show correlation with any of the examined 
risk factors, probably due to its low level in the normal 
tissue. The Normal-specific bacteria inversely corre-
lated with age, the strongest risk factor for BC, and were 
enriched in nulliparous women as well as in women who 
did not breastfeed as compared with those who breastfed. 
Whether these bacteria, abundant in the normal breast 
and, except for Acetobacter aceti, previously detected in 
breast milk [61], are lost via breastfeeding requires fur-
ther investigation. Racial background is another key 
determinant of BC. While BC incidence overall is higher 
in Caucasian women, African American women are at 
a higher risk of developing the more aggressive TNBC. 
Unexpectedly, Acetobacter aceti, Lactobacillus vini and 
paracasei, and Xanthomonas sp. were enriched in normal 
breasts from African American women as compared with 
the Caucasian and Asian cohorts. Interestingly, Lactoba-
cillus was previously reported highly abundant in TNBC 
from White non-Hispanic patients as compared with 
Black non-Hispanic tumor tissues [58], whereas the fam-
ily Xanthomonadaceae was abundant in White non-His-
panic tumors [59]. Although previous reports evaluated 
Ralstonia abundance in breasts from Black non-Hispanic 
and White non-Hispanic women, their results were 

discordant with our current study supposedly because of 
their use of NAT as control tissue [58, 59].

Next, to test the hypothesis of a key microbial–host 
crosstalk that may influence the tumor microenviron-
ment, we examined the transcriptome changes in 190 
normal breast tissues and their association with the 
abundance of Ralstonia, Acetobacter aceti, Lactobacil-
lus vini, Lactobacillus paracasei, and Xanthomonas sp. 
Overall, our findings confirm the data from Tzeng et al., 
where the breast bacteria exhibit significant associations 
with immunomodulatory genes [8]. The gene set enrich-
ment analysis of the DEGs linked with microbial level in 
normal breast revealed the involvement of immune path-
ways including the IL17 signaling (Acetobacter aceti), T 
cell receptor signaling (Lactobacillus paracasei), inflam-
matory response (Lactobacillus vini), and phagocytotic 
process [62] (Lactobacillus vini and Xanthomoas sp.). 
Moreover, although the influence of Acetobacter aceti on 
the tissue homeostasis appeared limited, its abundance 
inversely correlated with keratin 16 (KRT16), a structural 
protein recently shown to regulate innate immunity in 
response to epidermal barrier stress [63]. The study by 
Hoskinson et al., where Spearman’s rank correlation anal-
ysis between the host transcriptome and microbial taxa 
and genes in healthy breast tissues was performed, iden-
tified the gene CYP24A1, encoding for 24-hydroxylase, 
inversely associated with a number of bacterial nutri-
ent transport and metabolic pathways [43]. Similarly, 
we found the relative abundance of certain microbes in 
the normal breast from healthy women to be linked with 
metabolic pathways such as lactose and galactose metab-
olism as well as fatty acid and cortisol synthesis. Specifi-
cally, in our study the abundance of both Lactobacillus 
vini and Xanthomonas sp. resulted inversely correlated 
with SCD expression, which encodes a stearoyl-CoA 
desaturase involved in fatty acid biosynthesis and whose 
elevated expression in human BCs predicts poor survival 
[64]. Interestingly, tissues abundant in Ralsonia, in addi-
tion to upregulation of carbohydrate metabolism-related 
genes, presented a significant downregulation in DOK7, 
which was recently reported to inhibit proliferation, 
migration, and invasion of BC cells through the PI3K/
PTEN/AKT pathway [65]. Overall, our data showed that 
changes in the expression of metabolism-related genes in 
the breast, previously linked with breast cancer suscepti-
bility [20, 43, 66], are associated with a switch in micro-
bial composition of the disease-free breast. Thus, our 
findings suggest that changes in microbial composition, 
and subsequently in the metabolic milieu of the breast, 
may occur prior to cancer initiation as a consequence 
of the exposure to a specific risk factor (i.e., age, and as 
recently reported [67], racial background). Further mech-
anistic investigation is required to link these bacterial 
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species to any functional role of this microbial population 
in heathy breasts.

Overall, our data show a distinctive microbiota for the 
normal breast tissue, which seem to reduce and even dis-
appear in NAT and, in a greater degree, in tumor. How-
ever, no correlation with Tyrer-Cuzick risk score was 
identified, thus suggesting that dysbiosis in the breast 
may occur late during the carcinogenesis process and 
might be a consequence rather than the cause of the 
changes in the microenvironmental milieu dictated by 
the already established tumor cells. An exception is given 
by the recently reported relationship between breast and 
gut microbiome. The breast microbiota composition can 
be directly [44] and indirectly [41, 68–70] influenced by 
alterations of the gut microbiota. Moreover, recently, 
Parida et  al. identified a gastrointestinal pro-oncogenic 
bacterium, Bacteroides fragilis, in breast tumor samples 
and suggested a potential role in BC initiation [44].

This study bears several limitations, including the lack 
of microscopic evaluation of breast tissues that would 
visually establish the presence of bacteria and their 
abundance in the processed tissue samples as well as the 
absence of mechanistic insights into the role of the identi-
fied microbial species in BC development. In vitro inves-
tigation shall follow to address these points. Although 
our attempts in detecting microbial population in a low 
biomass tissue such as the normal breast via quantitative 
PCR and in situ hybridization failed, our findings rely on 
16S rRNA analysis, which is a widely accepted approach 
in the study of the breast microbiome [8, 43, 67]. Moreo-
ver, we detected a lack of correlation between the bacte-
ria and BMI, which was unexpected since bacteria can 
adapt to the fatty acid environment in the breast tissue. 
Hematoxylin eosin analysis may be a more appropriate 
approach to elucidating the association of the adipose 
tissue area in the analyzed biopsy with the microbial 
level. Finally, microbiota-derived metabolites are crucial 
mediators of host-microbial interactions [71], therefore 
metabolomic analysis would be critical for defining the 
consequences of the dysbiosis.

Conclusions
In summary, this investigation revealed for the first 
time the presence of Acetobacter aceti, Lactobacillus 
vini and paracasei, and Xanthomonas sp. in the normal 
breast, whereas Ralstonia was found abundant in NAT 
and tumor (Fig. 6). Our findings clearly have shown dif-
ferences in bacterial composition of normal breast and 
NAT, which should prompt caution in the interpreta-
tion of the prior reports of the “normal” breast micro-
biome. Although the link with BC risk factors emerging 
from this investigation is unclear, the study reports that 
factors such as parity, breastfeeding, BC predisposition, 

age, and racial origin can affect the microbial composi-
tion of the breast and thus the gene expression and biol-
ogy of the tissue. A thorough understanding of the breast 
microbiome and the impact of host genetics, lifestyle, 
and socioeconomic factors is critical for identifying both 
the beneficial and harmful microbiota that may affect 
BC development and its potential role in prevention and 
treatment.
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