"Although great strides have been made towards the treatment of breast cancer, we still have a ways to go!"
Published Research with KTB Samples
As research is completed and published that is focused on the Komen Tissue Bank, or that results from using KTB samples, we will continue to add it to this reference page. If you are aware of research that should be included here, please contact the Chief Operating Officer.
Please note: liberties have been taken with citation format in order to facilitate ease of finding the publication desired.
92. Stromal heterogeneity may explain increased incidence of metaplastic breast cancer in women of African descent. Kumar, B., Khatpe, A.S., Guanglong, J. et al. Nat Commun 14, 5683 (2023). https://doi.org/10.1038/s41467-023-41473-6
91. Exploring breast tissue microbial composition and the association with breast cancer risk factors. German, R., Marino, N., Hemmerich, C., Podicheti, R., Rusch, D. B., Stiemsma, L. T., Gao, H., Xuei, X., Rockey, P., & Storniolo, A. M. (2023). Breast cancer research : BCR, 25(1), 82. https://doi.org/10.1186/s13058-023-01677-6
90. Testing the Effect of Culturally Targeted, Normative Messaging on Black Women’s Intentions to Participate in a Breast Cancer Clinical Trial Ridley-Merriweather, Katherine Ellen. Indiana University - Purdue University Indianapolis, ProQuest Dissertations Publishing, 2023. 30566280.
89. Host, reproductive, and lifestyle factors in relation to quantitative histologic metrics of the normal breast Abubakar, M., Klein, A., Fan, S. et al. Breast Cancer Res 25, 97 (2023). https://doi.org/10.1186/s13058-023-01692-7
88. Aged Breast Extracellular Matrix Drives Mammary Epithelial Cells to an Invasive and Cancer-Like Phenotype Bahcecioglu, G., Yue, X., Howe, E., Guldner, I., Stack, M. S., Nakshatri, H., Zhang, S., & Zorlutuna, P. (2021). Advanced science (Weinheim, Baden-Wurttemberg, Germany), 8(22), e2100128. https://doi.org/10.1002/advs.202100128
87. Outdoor Air Pollution And Histologic Composition Of Normal Breast Tissue Ish J.L., Abubakar M., Fan S., et. al, Environment International, Volume 176, 2023, https://doi.org/10.1016/j.envint.2023.107984
86. TONSL Is an Immortalizing Oncogene and a Therapeutic Target in Breast Cancer. Khatpe, A. S., Dirks, R., Bhat-Nakshatri, P., et al. (2023). Cancer research, 83(8), 1345–1360. https://doi.org/10.1158/0008-5472.CAN-22-3667
85. The Impact of Reproductive Factors on DNA Methylation-Based Telomere Length in Healthy Breast Tissue. Sehl, M.E., Henry, J.E., Storniolo, A.M. et al. npj Breast Cancer 8, 48 (2022). https://doi.org/10.1038/s41523-022-00410-4
84. Mutational Landscapes of Normal Breast During Age and Pregnancy Determine Cancer Risk Cereser B., Tabassum N., Del Bel Belluz L., Yiu A., bioRxiv 2020.09.04.277715; doi: https://doi.org/10.1101/2020.09.04.277715
83. Immune Cells are Increased in Normal Breast Tissues of BRCA1/2 Mutation Carriers. Ogony J, Hoskin TL, Stallings-Mann M. Breast Cancer Res Treat. 2023 Jan;197(2):277-285. doi: 10.1007/s10549-022-06786-y.
82. Towards Defining Morphologic Parameters of Normal Parous and Nulliparous Breast Tissues by Artificial Intelligence. Ogony J, de Bel T, Radisky DC, Kachergus J. Breast Cancer Res. 2022 Jul 11;24(1):45. doi: 10.1186/s13058-022-01541-z.
81. Racial Differences in Cumulative Disadvantage Among Women and Its Relation to Health: Development and Preliminary Validation of the Cumulative Stress Inventory of Women’s Experiences Latham-Mintus K., Bigatti S., Herbert B., et al., Health Equity 2022 6.1, http://online.liebertpub.com/doi/10.1089/heq.2021.0038
80. Metabolic Links to Socioeconomic Stresses Uniquely Affecting Ancestry in Normal Breast Tissue at Risk for Breast Cancer Rujchanarong D., Scott D., Park Y., et al., Frontiers in Oncology 12:876651, 2022, https://doi.org/10.3389/fonc.2022.876651
79. Mapping Hormone Regulated Cell Cell Interaction Networks in the Human Breast at Single Cell Resolution Murrow L., Weber R., Caruso J., et al., Cell Systems 13, 1-21, 2022, https://doi.org/10.1016/j.cels.2022.06.005
78. Association of Genetic Ancestry with Terminal Duct Lobular Unit Involution Among Healthy Women Sung H., Koka H., Marino N., et al., JNCI: Journal of the National Cancer Institute, 2022, https://doi.org/10.1093/jnci/djac063
77. Compositional and Functional Potential of the Human Mammary Microbiota Prior to and Following Breast Cancer Diagnosis Hoskinson C., Zheng K., Gabel J., et al. American Society for Microbiology, 2022, https://doi.org/10.1128/msystems.01489-21
76. A Human Breast Atlas Integrating Single Cell Proteomics and Transcriptomics G. Kenneth Gray, Carman Man-Chung Li, Jennifer M. Rosenbluth, et al. Developmental Cell, Volume 57, Issue 11, 2022, https://doi.org/10.1016/j.devcel.2022.05.003
75. Acquisition, Processing and Single-Cell Analysis of Normal Human Breast Tissues from a Biobank Bhat-Nakshatri P, Marino N, Gao H, Liu Y, Storniolo AM, Nakshatri H. STAR Protoc. 2021 Dec 16;3(1):101047. doi: 10.1016/j.xpro.2021.101047. PMID: 34977686; PMCID: PMC8689348.
74. A Novel Qualitative Approach for Identifying Effective Communication for Recruitment of Minority Women to a Breast Cancer Prevention Study K. E. Ridley-Merriweather, K. J. Head, S. M. Younker, et al. Contemporary Clinical Trials Communications, Volume 27 (2022) https://doi.org/10.1016/j.conctc.2022.100910
73. Breast Cancer Endocrine Therapy Promotes Weight Gain with Distinct Adipose Tissue Effects in Lean and Obese Mice Scalzo, R., Foright, R., Hull, S. et al. Endocrinology, Volume 162, Issue 11, November 2021, bqab174, https://doi.org/10.1210/endocr/bqab174
72. FAM83 is a Potential Biomarker for Breast Cancer Initation Marino, N., German, R., Podicheti, R. et al. Biomark Res 10, 8 (2022). https://doi.org/10.1186/s40364-022-00353-9
71. Aberrant Epigentic and Transcriptional Events Associated with Breast Cancer Risk Marino, N., German, R., Podicheti, R. et al. Clin Epigenet 14, 21 (2022). https://doi.org/10.1186/s13148-022-01239-1
70. Leveraging Multi-Task Learning to Cope With Poor and Missing Labels of Mammograms. Tardy M and Mateus D (2022) Front. Radiol. 1:796078. doi: 10.3389/fradi.2021.796078
68. Hormonally regulated myogenic miR-486 influences sex-specific differences in cancer-induced skeletal muscle defects Ruizhong Wang, Poornima Bhat-Nakshatri, Xiaoling Zhong, Teresa Zimmers, Harikrishna Nakshatri, Endocrinology, 2021;, bqab142, https://doi.org/10.1210/endocr/bqab142
67. The Effects of Lifetime Estrogen Exposure on Breast Epigentic Age
66. Breast Heterogeneity: Obstacles to Developing Universal Biomarkers of Breast Cancer Initiation and Progression Dirks, R. C., Burney, H. N., Anjanappa, M., Sandusky, G. E., Hao, Y., Liu, Y., Schmidt, M. C., & Nakshatri, H. (2020). Journal of the American College of Surgeons, 231(1), 85–96. https://doi.org/10.1016/j.jamcollsurg.2020.03.035
65. Mammary mechanobiology - investigating roles for mechanically activated ion channels in lactation and involution. Stewart, T. A., Hughes, K., Stevenson, A. J., Marino, N., Ju, A. L., Morehead, M., & Davis, F. M. (2021). Journal of cell science, 134(1), jcs248849. https://doi.org/10.1242/jcs.248849
64. A single-cell atlas of the healthy breast tissues reveals clinically relevant clusters of breast epithelial cells. Bhat-Nakshatri, P., Gao, H., Sheng, L., McGuire, P. C., Xuei, X., Wan, J., Liu, Y., Althouse, S. K., Colter, A., Sandusky, G., Storniolo, A. M., & Nakshatri, H. (2021). Cell reports. Medicine, 2(3), 100219. https://doi.org/10.1016/j.xcrm.2021.100219
63. Polygenic Risk Score for the Prediction of Breast Cancer is Related to Lesser Terminal Duct Lobular Unit Involution of the Breast Bodelon, C., Oh, H., Derkach, A., Sampson, J. N., Sprague, B. L., Vacek, P., Weaver, D. L., Fan, S., Palakal, M., Papathomas, D., Xiang, J., Patel, D. A., Linville, L., Clare, S. E., Visscher, D. W., Mies, C., Hewitt, S. M., Brinton, L. A., Storniolo, A., He, C., … Figueroa, J. D. (2020). NPJ breast cancer, 6, 41. https://doi.org/10.1038/s41523-020-00184-7
62. Multiscale Imaging of Basal Cell Dynamics in the Functionally Mature Mammary Gland. Stevenson, A. J., Vanwalleghem, G., Stewart, T. A., Condon, N. D., Lloyd-Lewis, B., Marino, N., ... & Davis, F. M. (2020). Proceedings of the National Academy of Sciences, 117(43), 26822-26832.
61. Inflammation Markers on Benign Breast Biopsy are Associated with Risk of Invasive Breast Cancer in African-American Women. Shaik, A. N., Kiavash, K., Stark, K., Boerner, J. L., Ruterbusch, J. J., Deirawan, H., ... & Cote, M. L. (2020). Breast Cancer Research and Treatment, 1-9.
60. Characterization of Weaning-Induced Breast Involution in Women: Implications for Young Women's Breast Cancer. Jindal, S., Narasimhan, J., Borges, V. F., & Schedin, P. (2020). NPJ breast cancer, 6(1), 1-11.
59. Upregulation of lipid metabolism genes in the breast prior to cancer diagnosis. Marino, N., German, R., Rao, X. et al. Upregulation of lipid metabolism genes in the breast prior to cancer diagnosis. npj Breast Cancer 6, 50 (2020). https://doi.org/10.1038/s41523-020-00191-8
58. Outdoor air pollution and terminal ductlobular involution of the normal breast. Niehoff, N.M., Keil, A.P., Jones, R.R. et al. Outdoor air pollution and terminal duct lobular involution of the normal breast. Breast Cancer Res 22, 100 (2020). https://doi.org/10.1186/s13058-020-01339-x
57. Death effector domain-containing protein induces vulnerability to cell cycle inhibition in triple-negative breast cancer. Ni, Y., Schmidt, K. R., Werner, B. A., Koenig, J. K., Guldner, I. H., Schnepp, P. M., ... & Howe, E. N. (2019). Nature communications, 10(1), 1-15.
56. Flower isoforms promote competitive growth in cancer. Madan, E., Pelham, C. J., Nagane, M., Parker, T. M., Canas-Marques, R., Fazio, K., ... & Yamashita, T. (2019). Nature, 572(7768), 260-264.
55. A risk-associated Active transcriptome phenotype expressed by histologically normal human breast tissue and linked to a pro-tumorigenic adipocyte population. Kang, T., Yau, C., Wong, C. K., Sanborn, J. Z., Newton, Y., Vaske, C., ... & Stuart, J. (2020). Breast Cancer Research, 22(1), 1-15.
54. A Computational Statistics Approach to Evaluate Blood Biomarkers for Breast Cancer Risk Stratification. Oktay, K., Santaliz-Casiano, A., Patel, M., Marino, N., Storniolo, A. M. V., Torun, H., ... & Erdogan, Z. M. (2020). Hormones and Cancer, 11(1), 17-33.
53. Breast Heterogeneity: Obstacles to Developing Universal Biomarkers of Breast Cancer Initiation and Progression. Dirks, R. C., Burney, H. N., Anjanappa, M., Sandusky, G. E., Hao, Y., Liu, Y., ... & Nakshatri, H. (2020). Journal of the American College of Surgeons.
52. Estimating breast tissue-specific DNA methylation age using next-generation sequencing data. Castle, J. R., Lin, N., Liu, J., Storniolo, A. M. V., Shendre, A., Hou, L., ... & He, C. (2020). Clinical Epigenetics, 12(1), 1-14.
51. Increased epigenetic age in normal breast tissue from luminal breast cancer patients. Hofstatter, E. W., Horvath, S., Dalela, D., Gupta, P., Chagpar, A. B., Wali, V. B., ... & Von Wahlde, M. K. (2018). Clinical epigenetics, 10(1), 112.
50. Dual TGFβ/BMP pathway inhibition enables expansion and characterization of multiple epithelial cell types of the normal and cancerous breast. Prasad, M., Kumar, B., Bhat-Nakshatri, P., Anjanappa, M., Sandusky, G., Miller, K. D., … & Nakshatri, H. (2019). Molecular Cancer Research, molcanres-0165.
49. Genetic ancestry-dependent differences in breast cancer-induced field defects in the tumor-adjacent normal breast. Nakshatri, H., Kumar, B., Burney, H. N., Cox, M. L., Jacobsen, M., Sandusky, G. E., … & Storniolo, A. M. V. (2019). Clinical Cancer Research, clincanres-3427.
48. Inflammatory signatures distinguish metabolic health in African American women with obesity. Denis, G. V., Sebastiani, P., Bertrand, K. A., Strissel, K. J., Tran, A. H., Slama, J., … & Palmer, J. R. (2018). PloS one, 13(5), e0196755.
47. Free fatty acids rewire cancer metabolism in obesity-associated breast cancer via estrogen receptor and mTOR signaling. Madak-Erdogan, Z., Band, S., Zhao, Y. C., Smith, B. P., Kulkoyluoglu-Cotul, E., Zuo, Q., … & Kim, S. H. (2019). Cancer research, canres-2849.
46. Normal breast-derived epithelial cells with luminal and intrinsic subtype-enriched gene expression document inter-individual differences in their differentiation cascade. Kumar, B., Prasad, M. S., Bhat-Nakshatri, P., Anjanappa, M., Kalra, M., Marino, N., … & Liu, Y. (2018). Cancer research, canres-0509.
45. Development of a New Monochrome Multiplex qPCR Method for Relative Telomere Length Measurement in Cancer. Dahlgren, P. N., Bishop, K., Dey, S., Herbert, B. S., & Tanaka, H. (2018). Neoplasia, 20(5), 425-431.
44. Serum insulin‐like growth factor (IGF)‐I and IGF binding protein‐3 in relation to terminal duct lobular unit involution of the normal breast in Caucasian and African American women: The Susan G. Komen Tissue Bank. Oh, H., Pfeiffer, R. M., Falk, R. T., Horne, H. N., Xiang, J., Pollak, M., … & Figueroa, J. D. (2018). International Journal of Cancer.
43. Triple-Negative Breast Cancer, Stem Cells, and African Ancestry. Jiagge, E., Chitale, D., & Newman, L. A. (2017). The American Journal of Pathology.
42. An analytical pipeline for discovery and verification of glycoproteins from plasma-derived extracellular vesicles as breast cancer biomarkers. Chen, I. H., Aguilar, H. A., Paez Paez, J. S., Wu, X., Pan, L., Wendt, M. K., … & Tao, W. A. (2018). Analytical chemistry.
41. A plasma telomeric cell-free DNA level in unaffected women with BRCA1 or/and BRCA2 mutations: a pilot study. Dey, S., Marino, N., Bishop, K., Dahlgren, P. N., Shendre, A., Storniolo, A. M., … & Tanaka, H. (2018). Oncotarget, 9(3), 4214.
40. Dual PI3K and Wnt pathway inhibition is a synergistic combination against triple negative breast cancer. Solzak, J. P., Atale, R. V., Hancock, B. A., Sinn, A. L., Pollok, K. E., Jones, D. R., & Radovich, M. (2017). NPJ breast cancer, 3(1), 17.
39. Relationships Among Obesity, Type 2 Diabetes, and Plasma Cytokines in African American Women. Denis, G. V., Sebastiani, P., Andrieu, G., Tran, A. H., Strissel, K. J., Lombardi, F. L., & Palmer, J. R. (2017). Obesity, 25(11), 1916-1920.
38. Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Chen, I. H., Xue, L., Hsu, C. C., Paez, J. S. P., Pan, L., Andaluz, H., … & Tao, W. A. (2017). Proceedings of the National Academy of Sciences, 201618088.
37. Normal breast tissue DNA methylation differences at regulatory elements are associated with the cancer risk factor age. Johnson, K. C., Houseman, E. A., King, J. E., & Christensen, B. C. (2017). Breast Cancer Research, 19(1), 81.
36. Heterogeneous drug penetrance of veliparib and carboplatin measured in triple negative breast tumors. Bartelink, I. H., Prideaux, B., Krings, G., Wilmes, L., Lee, P. R. E., Bo, P., … & Jones, E. F. (2017). Breast Cancer Research, 19(1), 107.
35. DNA methylation age is elevated in breast tissue of healthy women. Sehl, M. E., Henry, J. E., Storniolo, A. M., Ganz, P. A., & Horvath, S. (2017). Breast cancer research and treatment, 164(1), 209-219.
34. Association between breast cancer genetic susceptibility variants and terminal duct lobular unit involution of the breast. Bodelon, C., Oh, H., Chatterjee, N., Garcia‐Closas, M., Palakal, M., Sherman, M. E., … & Chicoine, R. E. (2017). International journal of cancer, 140(4), 825-832.
33. Applying the Health Belief Model and an Integrated Behavioral Model to Promote Breast Tissue Donation Among Asian Americans. Shafer, A., Kaufhold, K., & Luo, Y. (2017). Health communication, 1-9.
32. DNA methylation differences at regulatory elements are associated with the cancer risk factor age in normal breast tissue. Johnson, K. C., Houseman, E. A., King, J. E., & Christensen, B. C. (2017). bioRxiv, 101287.
31. Alterations in the immune cell composition in premalignant breast tissue that precede breast cancer development. Degnim, A. C., Hoskin, T. L., Arshad, M., Frost, M. H., Winham, S. J., Brahmbhatt, R. A., … & Miller, E. E. (2017). Clinical Cancer Research, 23(14), 3945-3952.
30. African American women’s perspectives on donating healthy breast tissue for research: implications for recruitment. Ridley-Merriweather, K. E., & Head, K. J. (2017). Health communication, 32(12), 1571-1580.
29. Asian American women’s perspectives on donating healthy breast tissue: implications for recruitment methods and messaging. Ridley-Merriweather, K. E. (2016). (Doctoral dissertation).
28. Preliminary evaluation of a fully-automated quantitative framework for characterizing general breast tissue histology via color histogram and color texture analysis. Keller, B. M., Gastounioti, A., Batiste, R. C., Kontos, D., & Feldman, M. D. (2016, March). In Medical Imaging 2016: Digital Pathology (Vol. 9791, p. 97910A). International Society for Optics and Photonics.
27. Breast cancer risk variants at 6q25 display different phenotype associations and regulate ESR1, RMND1 and CCDC170. Dunning, A. M., Michailidou, K., Kuchenbaecker, K. B., Thompson, D., French, J. D., Beesley, J., … & Dicks, E. (2015). Nature genetics, 47(3), 374.
26. Aberrant reduction of telomere repetitive sequences in plasma cell-free DNA for early breast cancer detection. Wu, X., & Tanaka, H. (2015). Oncotarget, 6(30), 29795.
25. Ages at menarche-and menopause-related genetic variants in relation to terminal duct lobular unit involution in normal breast tissue. Oh, H., Bodelon, C., Palakal, M., Chatterjee, N., Sherman, M. E., Linville, L., … & Papathomas, D. (2016). Breast cancer research and treatment, 158(2), 341-350.
24. Whole-genome bisulfite sequencing of cell-free DNA identifies signature associated with metastatic breast cancer. Legendre, C., Gooden, G. C., Johnson, K., Martinez, R. A., Liang, W. S., & Salhia, B. (2015). Clinical epigenetics, 7(1), 100.
23. Ethnicity-Dependent and -Independent Heterogeneity in Healthy Normal Breast Hierarchy Impacts Tumor Characterization. Nakshatri, H., Anjanappa. M., Bhat-Nakshatri1, P. (2015), Scientific Reports : 5 :13526.
22. Aberrant methylation of imprinted genes is associated with negative hormone receptor status in invasive breast cancer. Barrow, T. M., Barault, L., Ellsworth, R. E., Harris, H. R., Binder, A. M., Valente, A. L., Shriver, C. D. and Michels, K. B. (2015), Int. J. Cancer, 137: 537–547.
21. The molecular landscape of the normal human breast–defining normal. Hilton, H. N., & Graham, J. D. (2014). Breast Cancer Research: 16:102.
20. Postpartum breast involution reveals regression of secretory lobules mediated by tissue-remodeling. Jindal, S., Gao, D., Bell, P., Albrektsen, G., Edgerton, S. M., Ambrosone, C. B., … Schedin, P. (2014). Breast Cancer Research : BCR, 16(2), R31. doi:10.1186/bcr3633
19. Circulating Sex Hormones and Terminal Duct Lobular Unit Involution of the Normal Breast. Khodr, Z. G., Sherman, M. E., Pfeiffer, R. M., Gierach, G. L., Brinton, L. A., Falk, R. T., … & Visscher, D. W. (2014). Cancer Epidemiology and Prevention Biomarkers, 23(12), 2765-2773.
18. Motivations, Concerns, and Experiences of Women Who Donate Normal Breast Tissue. Doherty, E. F., MacGeorge, E. L., Gillig, T., & Clare, S. E. (2014). Cancer Epidemiology Biomarkers & Prevention, cebp-0941.
17. Terminal duct lobular unit involution of the normal breast: implications for breast cancer etiology. Figueroa, J., Pfeiffer, R., Patel, D., Linville, L., Brinton, L., Gierach, G., & … Sherman, M. (2014). Journal Of The National Cancer Institute,106(10).
16. Cancer impacts microRNA expression, release and function in cardiac and skeletal muscle. Chen, D., Goswami, C. P., Burnett, R. M., Anjanappa, M., Bhat-Nakshatri, P., Muller, W., & Nakshatri, H. (2014). Cancer research, 74(16), 4270-4281.
15. Parent-of-origin-specific allelic associations among 106 genomic loci for age at menarche. Perry, J. R., Day, F., Elks, C. E., Sulem, P., Thompson, D. J., Ferreira, T., … & Albrecht, E. (2014). Nature, 514(7520), 92.
14. Phenotypic plasticity in normal breast derived epithelial cells. Sauder, C. A., Koziel, J. E., Choi, M., Fox, M. J., Grimes, B. R., Badve, S., … & Herbert, B. S. (2014). BMC cell biology, 15(1), 20.
13. KIF14 Promotes AKT Phosphorylation and Contributes to Chemoresistance in Triple-Negative Breast Cancer. Singel, S., Cornelius, C., Zaganjor, E., Batten, K., Sarode, V., Buckley, D., & … Shay, J. (2014). Neoplasia (New York, N.Y.), 16(3), 247-256.e2. doi:10.1016/j.neo.2014.03.008
12. Next-generation transcriptome sequencing of the premenopausal breast epithelium using specimens from a normal human breast tissue bank. Pardo, I., Lillemoe, H. A., Blosser, R. J., Choi, M., Sauder, C. A., Doxey, D. K., … & Hickenbotham, M. (2014). Breast Cancer Research, 16(2), R26.
11. Immune cell quantitation in normal breast tissue lobules with and without lobulitis. Degnim, A. C., Brahmbhatt, R. D., Radisky, D. C., Hoskin, T. L., Stallings-Mann, M., Laudenschlager, M., … & Visscher, D. W. (2014). Breast cancer research and treatment, 144(3), 539-549.
10. Characterizing the heterogeneity of triple-negative breast cancers using microdissected normal ductal epithelium and RNAsequencing. Radovich, M., Clare, S. E., Atale, R., Pardo, I., Hancock, B. A., Solzak, J. P., … & Lillemoe, H. A. (2014). 143(1), 57-68.
9. Molecular profiling of human mammary gland links breast cancer risk to a p27(+) cell population with progenitor characteristics. Choudhury, S., Almendro, V., Merino, V. F., Wu, Z., Maruyama, R., Su, Y., & … Polyak, K. (2013). Cell Stem Cell, 13(1), 117-130.
8. Potential roles of microRNAs in regulating long intergenic noncoding RNAs. JJuan, L., Wang, G., Radovich, M., Schneider, B. P., Clare, S. E., Wang, Y., & Liu, Y. (2013). BMC medical genomics, 6(1), S7.
7. Telomere fusions in early human breast carcinoma. Tanaka, H., Abe, S., Huda, N., Tu, L., Beam, M. J., Grimes, B., & Gilley, D. (2012). Proceedings of the National Academy of Sciences, 109(35), 14098-14103.
6. Sensitive PCR-based quantitation of cell-free circulating microRNAs. Hastings, M. L., Palma, J., & Duelli, D. M. (2012). Methods, 58(2), 144-150.
5. The Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center: A Unique Resource for Defining the “Molecular Histology” of the Breast., Sherman, M. E., Figueroa, J. D., Henry, J. E., Clare, S. E., Rufenbarger, C., & Storniolo, A. M. (2012). Cancer Prevention Research.
4. Histologic findings in normal breast tissues: comparison to reduction mammaplasty and benign breast disease tissues. Degnim, A. C., Visscher, D. W., Hoskin, T. L., Frost, M. H., Vierkant, R. A., Vachon, C. M., … & Hartmann, L. C. (2012). Breast cancer research and treatment, 133(1), 169-177.
3. Plasma components affect accuracy of circulating cancer-related microRNA quantitation. Kim, D. J., Linnstaedt, S., Palma, J., Park, J. C., Ntrivalas, E., Kwak-Kim, J. Y., … & Duelli, D. M. (2012).The Journal of Molecular Diagnostics, 14(1), 71-80.
2. A large, consistent plasma proteomics data set from prospectively collected breast cancer patient and healthy volunteer samples. Riley, C. P., Zhang, X., Nakshatri, H., Schneider, B., Regnier, F. E., Adamec, J., & Buck, C. (2011). Journal of translational medicine, 9(1), 80.
1. Persistent upregulation of U6:SNORD44 small RNA ratio in the serum of breast cancer patients, Appaiah, H. N., Goswami, C. P., Mina, L. A., Badve, S., Sledge, G. W., Liu, Y., & Nakshatri, H. (2011). Breast Cancer Research, 13(5), R86.